【C++】哈希

1. unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到\log_{2}N ,即最差情况下 需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次 数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑 树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和 unordered_set进行介绍,unordered_multimap和unordered_multiset

1.1 unordered_map

1. unordered_map是存储键值对的关联式容器,其允许通过keys快速的索引到与其对应的 value。 2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键 和映射值的类型可能不同。

3. 在内部,unordered_map没有对按照任何特定的顺序排序, 为了能在常数范围内找到key所 对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。

4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率 较低。

5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。 6. 它的迭代器至少是前向迭代器。

1.1.2 unordered_map的接口说明

1. unordered_map的构造

注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如 果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返 回。

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

6. unordered_map的修改操作

1.2 unordered_set

unordered_set在线文档说明

2. 底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

2.1 哈希概念

        顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经 过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( ),搜索的效率取决 于搜索过程中元素的比较次数。

        理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过 某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函 数可以很快找到该元素。

当向该结构中:

插入元素

        根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

搜索元素

        对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比 较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表 (Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快 问题:按照上述哈希方式,向集合中 插入元素44,会出现什么问题?

2.2 哈希冲突

对于两个数据元素的关键字 和 (i != j),有 != ,但有:Hash( k_{i}) == Hash( k_{j}),即:不同关键字通过 相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

发生哈希冲突该如何处理呢?

2.3 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:

        哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0 到m-1之间

        哈希函数计算出来的地址能均匀分布在整个空间中

        哈希函数应该比较简单

常见哈希函数

1. 直接定制法--(常用)

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先 知道关键字的分布情况 使用场景:适合查找比较小且连续的情况 

2. 除留余数法--(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函 数:Hash(key) = key% p(p将关键码转换成哈希地址

3. 平方取中法

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为 4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知 道关键字的分布,而位数又不是很大的情况

4. 折叠法

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加 求和,并按散列表表长,取后几位作为散列地址。 折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

5. 随机数法

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为 随机数函数。 通常应用于关键字长度不等时采用此法

6. 数学分析法

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能 在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出 现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布 较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

2.4 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

2.4.1 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那 么可以把key存放到冲突位置中的“下一个” 空位置中去。

1. 线性探测

比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论 上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

        插入

                通过哈希函数获取待插入元素在哈希表中的位置

                如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探 测找到下一个空位置,插入新元素

        删除

                采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他 元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标 记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE}; 
// 注意:假如实现的哈希表中元素唯一,即key相同的元素不再进行插入
// 为了实现简单,此哈希表中我们将比较直接与元素绑定在一起
template<class K, class V>
class HashTable
{
     struct Elem
     { 
         pair<K, V> _val;
         State _state;
     };
 
public:
         HashTable(size_t capacity = 3)
         : _ht(capacity), _size(0)
     {
         for(size_t i = 0; i < capacity; ++i)
         _ht[i]._state = EMPTY;
     }
 
 bool Insert(const pair<K, V>& val)
 {
 // 检测哈希表底层空间是否充足
 // _CheckCapacity();
     size_t hashAddr = HashFunc(key);
 // size_t startAddr = hashAddr;
     while(_ht[hashAddr]._state != EMPTY)
     {
        if(_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
             return false;
 
         hashAddr++;
         if(hashAddr == _ht.capacity())
             hashAddr = 0;
 /*
 // 转一圈也没有找到,注意:动态哈希表,该种情况可以不用考虑,哈希表中元素个数
到达一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是不会存满的
     if(hashAddr == startAddr)
     return false;
 */
 }
 
 // 插入元素
     _ht[hashAddr]._state = EXIST;
     _ht[hashAddr]._val = val;
     _size++;
     return true;
 }
 int Find(const K& key)
 {
     size_t hashAddr = HashFunc(key);
     while(_ht[hashAddr]._state != EMPTY)
     {
         if(_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first == key)
             return hashAddr;
 
         hashAddr++;
     }
     return hashAddr;
 }
 bool Erase(const K& key)
 {
     int index = Find(key);
     if(-1 != index)
     {
         _ht[index]._state = DELETE;
         _size++;
         return true;
     }
     return false;
 }
     size_t Size()const;
     bool Empty() const; 
     void Swap(HashTable<K, V, HF>& ht);
private:
     size_t HashFunc(const K& key)
     {
         return key % _ht.capacity();
     }
private:
     vector<Elem> _ht;
     size_t _size;
};

思考:哈希表什么情况下进行扩容?如何扩容?

void CheckCapacity()
{
     if(_size * 10 / _ht.capacity() >= 7)
     {
         HashTable<K, V, HF> newHt(GetNextPrime(ht.capacity));
         for(size_t i = 0; i < _ht.capacity(); ++i)
         {
             if(_ht[i]._state == EXIST)
                 newHt.Insert(_ht[i]._val);
         }
 
         Swap(newHt);
     }
}

线性探测优点:实现非常简单,

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据 了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

2. 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就 是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:H_{i} = ( H_{0}+ i^{2})% m, 或者:H_{i} = ( H_{0}- i^{2} )% m。其中:i = 1,2,3…, 是通过散列函数Hash(x)对元素的关键码 key 进行 计算得到的位置,m是表的大小。 对于2.1中如果要插入44,产生冲突,使用解决后的情况为:

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置 都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装 满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

2.4.2 开散列

1. 开散列概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码 归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结 点存储在哈希表中。

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

2. 开散列实现

3. 开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一 个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件 怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发 生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

4. 开散列的思考

1. 只能存储key为整形的元素,其他类型怎么解决?

2. 除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?

5. 开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大 量的空闲空间以确保搜索效率,如二次探查法要求装载因子a ,而表项所占空间又比指针大的 多,所以使用链地址法反而比开地址法节省存储空间。

3. 模拟实现

3.1 哈希表的改造

1. 模板参数列表的改造

2. 增加迭代器操作

// 为了实现简单,在哈希桶的迭代器类中需要用到hashBucket本身

3. 增加通过key获取value操作

3.2 unordered_map

4. 哈希的应用

4.1 位图

数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比 特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:

2. 位图概念

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个 数据存不存在的。

4.1.2 位图的实现

4.1.3 位图的应用

        1. 快速查找某个数据是否在一个集合中

        2. 排序

        3. 求两个集合的交集、并集等

        4. 操作系统中磁盘块标记

4.2 布隆过滤器

4.2.1 布隆过滤器提出

        1. 用哈希表存储用户记录,缺点:浪费空间

        2. 用位图存储用户记录,缺点:不能处理哈希冲突

        3. 将哈希与位图结合,即布隆过滤器

4.2.2布隆过滤器概念

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结 构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函 数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

4.2.3 布隆过滤器的插入

向布隆过滤器中插入:"baidu"

4.2.4 布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。 所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零, 代表该元素一定不在哈希表中,否则可能在哈希表中。

注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因 为有些哈希函数存在一定的误判。

比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比 特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。

4.2.5 布隆过滤器删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了, 因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈 希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删 除操作。

缺陷:

        1. 无法确认元素是否真正在布隆过滤器中

        2. 存在计数回绕

4.2.6 布隆过滤器优点

        1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关

         2. 哈希函数相互之间没有关系,方便硬件并行运算

        3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势

        4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势

        5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能

        6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

4.2.7 布隆过滤器缺陷

        1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白 名单,存储可能会误判的数据)

        2. 不能获取元素本身

        3. 一般情况下不能从布隆过滤器中删除元素

        4. 如果采用计数方式删除,可能会存在计数回绕问题

5 一致性哈希:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值