这道题目是关于极限的。我们需要找到当 \( x \) 趋向于某个值时,函数 \( y = \frac{x^2 - 1}{x(x - 1)} \) 趋向于无穷大的情况。
首先,我们可以简化这个函数:
\[ y = \frac{x^2 - 1}{x(x - 1)} = \frac{(x + 1)(x - 1)}{x(x - 1)} \]
在 \( x \neq 1 \) 的情况下,我们可以约去 \( (x - 1) \):
\[ y = \frac{x + 1}{x} \]
现在,我们来看 \( y \) 在 \( x \) 趋向于不同值时的行为:
1. 当 \( x \) 趋向于 0 时,\( y \) 趋向于 \(-\infty\),因为分子趋向于 1,而分母趋向于 0,且为负。
2. 当 \( x \) 趋向于 1 时,\( y \) 趋向于 \(+\infty\),因为分子趋向于 2,而分母趋向于 0,且为正。
3. 当 \( x \) 趋向于 \(+\infty\) 时,\( y \) 趋向于 1,因为分子和分母都趋向于无穷大,但分子增长得慢一些。
4. 当 \( x \) 趋向于 \(-\infty\) 时,\( y \) 也趋向于 1,原因同上。
根据题目,我们需要找到 \( y \) 趋向于无穷大的情况,这发生在 \( x \) 趋向于 1 时。因此,正确答案是:
B 1
这道题目是关于无穷小量的比较。当 \( x \) 趋向于 0 时,我们需要找出哪个函数不与 \( x \) 等价。等价的意思是两个函数在 \( x \) 趋向于 0 时的极限比值是 1。
我们来分析每个选项:
A. \( \tan x \):当 \( x \) 趋向于 0 时,\( \tan x \) 与 \( x \) 是等价的,因为 \( \lim_{x \to 0} \frac{\tan x}{x} = 1 \)。
B. \( \sin x \):当 \( x \) 趋向于 0 时,\( \sin x \) 也与 \( x \) 是等价的,因为 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \)。
C. \( \ln(1+x) \):当 \( x \) 趋向于 0 时,\( \ln(1+x) \) 与 \( x \) 是等价的,因为 \( \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \)。
D. \( 1 - e^x \):当 \( x \) 趋向于 0 时,\( 1 - e^x \) 与 \( x \) 不是等价的。实际上,\( 1 - e^x \) 与 \( -x \) 是等价的,因为 \( \lim_{x \to 0} \frac{1 - e^x}{-x} = 1 \)。
因此,正确答案是 D. \( 1 - e^x \)。
这道题目是关于无穷小量的。当 \( x \) 趋向于 0 时,我们需要找出哪个表达式是无穷小的。
无穷小量是指当 \( x \) 趋向于 0 时,函数的值也趋向于 0。我们来分析每个选项:
A. \( \sin \frac{1}{x} \):当 \( x \) 趋向于 0 时,\( \frac{1}{x} \) 趋向于无穷大,因此 \( \sin \frac{1}{x} \) 在 -1 和 1 之间振荡,不趋向于 0。
B. \( x \sin \frac{1}{x} \):虽然 \( \sin \frac{1}{x} \) 在 -1 和 1 之间振荡,但 \( x \) 趋向于 0,因此 \( x \sin \frac{1}{x} \) 趋向于 0,是无穷小量。
C. \( \frac{\sin x}{x} \):当 \( x \) 趋向于 0 时,\( \frac{\sin x}{x} \) 趋向于 1,不是无穷小量。
D. \( \frac{1 - \sin \frac{1}{x}}{x} \):这个表达式的行为取决于 \( \sin \frac{1}{x} \),由于 \( \sin \frac{1}{x} \) 在 -1 和 1 之间振荡,\( 1 - \sin \frac{1}{x} \) 在 0 和 2 之间振荡,因此 \( \frac{1 - \sin \frac{1}{x}}{x} \) 不趋向于 0。
因此,正确答案是 B. \( x \sin \frac{1}{x} \)。
这道题目是关于极限的。我们需要找出哪个极限表达式是正确的。
我们来分析每个选项:
A. \( \lim_{x \to \infty} \frac{\sin x}{x} = 1 \):这个表达式是错误的。当 \( x \) 趋向于无穷大时,\( \sin x \) 在 -1 和 1 之间振荡,而 \( x \) 趋向于无穷大,因此 \( \frac{\sin x}{x} \) 趋向于 0。
B. \( \lim_{x \to 0} \frac{\sin x}{2x} = 1 \):这个表达式是错误的。正确的极限应该是 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),因此 \( \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \)。
C. \( \lim_{x \to \infty} x \sin \frac{1}{x} = 1 \):这个表达式是正确的。当 \( x \) 趋向于无穷大时,\( \frac{1}{x} \) 趋向于 0,因此 \( \sin \frac{1}{x} \) 趋向于 \( \frac{1}{x} \),所以 \( x \sin \frac{1}{x} \) 趋向于 1。
D. \( \lim_{x \to 0} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = 1 \):这个表达式是错误的。当 \( x \) 趋向于 0 时,\( \frac{1}{x} \) 趋向于无穷大,因此 \( \sin \frac{1}{x} \) 在 -1 和 1 之间振荡,而 \( \frac{1}{x} \) 趋向于无穷大,因此 \( \frac{\sin \frac{1}{x}}{\frac{1}{x}} \) 趋向于 0。
因此,正确答案是 C. \( \lim_{x \to \infty} x \sin \frac{1}{x} = 1 \)。