这道题目是关于导数的。题目问的是,如果函数 \( f(x) \) 在 \( x_0 \) 处可导,那么极限 \( \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} \) 等于什么。
这个极限实际上是导数的定义,但是它是从左侧(即 \( x_0 - \Delta x \))来考虑的。导数的定义是:
\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \]
而题目中的极限是从左侧来考虑的,即:
\[ \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} \]
这个极限实际上是导数的负值,因为 \( \Delta x \) 是负的,所以:
\[ \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = -f'(x_0) \]
因此,正确答案是 A. \( -f'(x_0) \)。
这道题目是关于函数 \( y = |x - 1| \) 在 \( x = 1 \) 处的连续性和可导性。
函数 \( y = |x - 1| \) 是一个绝对值函数,它在 \( x = 1 \) 处有一个尖点。我们来分析这个函数在 \( x = 1 \) 处的性质:
1. **连续性**:函数 \( y = |x - 1| \) 在 \( x = 1 \) 处是连续的,因为当 \( x \) 从左侧或右侧接近 1 时,函数值都趋向于 0,且函数在 \( x = 1 \) 处的值也是 0。
2. **可导性**:函数 \( y = |x - 1| \) 在 \( x = 1 \) 处不可导,因为在 \( x = 1 \) 处,函数的图形有一个尖点,这意味着函数在这一点的左右两侧的斜率(导数)不相等。具体来说,当 \( x \) 从左侧接近 1 时,函数的斜率为 -1;当 \( x \) 从右侧接近 1 时,函数的斜率为 1。
因此,正确答案是 B. 连续,不可导。
这道题目是关于求曲线在某点处的切线斜率。给定的曲线方程是 \( y = 2x^3 - 5x^2 + 4x - 5 \),我们需要求在点 \( (2, -1) \) 处的切线斜率。
切线斜率可以通过求函数在该点的导数得到。首先,我们求函数的导数:
\[ y' = \frac{d}{dx}(2x^3 - 5x^2 + 4x - 5) \]
\[ y' = 6x^2 - 10x + 4 \]
然后,我们将 \( x = 2 \) 代入导数中,得到切线斜率:
\[ y'(2) = 6(2)^2 - 10(2) + 4 \]
\[ y'(2) = 24 - 20 + 4 \]
\[ y'(2) = 8 \]
因此,曲线在点 \( (2, -1) \) 处的切线斜率等于 8。
正确答案是 A. 8。