昇思大模型第7天打卡|函数式自动微分

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口和。下面我们使用一个简单的单层线性变换模型进行介绍。gradvalue_and_grad

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

函数与计算图

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。

compute-graph

在这个模型中,𝑥𝑥为输入,𝑦𝑦为正确值,𝑤𝑤和𝑏𝑏是我们需要优化的参数。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

我们根据计算图描述的计算过程,构造计算函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

执行计算函数,可以获得计算的loss值。

loss = function(x, y, w, b)
print(loss)

微分函数与梯度计算

为了优化模型参数,需要求参数对loss的导数:∂损失∂w∂损失∂𝑤和∂损失∂b∂损失∂𝑏,此时我们调用函数,来获得的微分函数。mindspore.gradfunction

这里使用了函数的两个入参,分别为:grad

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对𝑤𝑤和𝑏𝑏求导,因此配置其在入参对应的位置。function(2, 3)

使用获得微分函数是一种函数变换,即输入为函数,输出也为函数。grad

grad_fn = mindspore.grad(function, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

 

停止渐变

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将改为同时输出loss和z的,获得微分函数并执行。functionfunction_with_logits

def function_with_logits(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, z
grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

可以看到求得𝑤𝑤、𝑏𝑏对应的梯度值发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用接口,将梯度在此处截断。我们将实现加入,并执行。ops.stop_gradientfunctionstop_gradient

def function_stop_gradient(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, ops.stop_gradient(z)
grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

 

 可以看到,求得𝑤𝑤、𝑏𝑏对应的梯度值与初始求得的梯度值一致。function

 

辅助数据

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

grad和提供参数,当其设置为时,可以自动实现前文手动添加的功能,满足返回辅助数据的同时不影响梯度计算的效果。value_and_gradhas_auxTruestop_gradient

下面仍使用,配置,并执行。function_with_logitshas_aux=True

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)
grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)

可以看到,求得𝑤𝑤、𝑏𝑏对应的梯度值与初始求得的梯度值一致,同时z能够作为微分函数的输出返回。function

神经网络梯度计算

前述章节主要根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的。接下来我们通过构造同样的神经网络,利用函数式自动微分来实现反向传播。nn.CellCell

首先我们继承构造单层线性变换神经网络。这里我们直接使用前文的𝑤𝑤、𝑏𝑏作为模型参数,使用进行包装后,作为内部属性,并在内实现相同的Tensor操作。nn.Cellmindspore.Parameterconstruct

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.w = w
        self.b = b

    def construct(self, x):
        z = ops.matmul(x, self.w) + self.b
        return z
# Instantiate model
model = Network()
# Instantiate loss function
loss_fn = nn.BCEWithLogitsLoss()



# Define forward function
def forward_fn(x, y):
    z = model(x)
    loss = loss_fn(z, y)
    return loss

完成后,我们使用接口获得微分函数,用于计算梯度。value_and_grad

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用指定对函数输入求导,因此将其配置为。对模型参数求导时,我们使用参数,使用方法从Cell中取出可以求导的参数。grad_positionNoneweightsmodel.trainable_params()

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)

 执行微分函数,可以看到梯度值和前文求得的梯度值一致。function

心得:,自动微分是深度学习中非常重要的一种技术,它可以帮助我们更加高效地进行深度学习模型的训练和优化。通过学习MindSpore中的函数式自动微分,我深刻地认识到了自动微分的重要性和优势,并且掌握了一些自动微分的实现方法。我相信这些知识和技能将对我的深度学习研究和实践产生积极的影响。

  • 9
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值