#include <bits/stdc++.h>
using namespace std;
const int N=1e3+9,V=2e4+9;
long long dp[V];
int main()
{
int n,v1;
cin>>n>>v1;
for(int i=1;i<=n;i++)
{
int v,w,s;
cin>>v>>w>>s;
//先对同种物品拆分成不同组
for(int k=1;k<=s;s-=k,k+=k)//将k个相同物品拆分到一起,以1、2、4、8...的顺序进行拆分
{
for(int j=v1;j>=0;j--)//一维dp数组从后往前更新,所以从后往前遍历
{
if(j>=k*v)//防止数组下标越界
{
dp[j]=max(dp[j],dp[j-k*v]+k*w);//状态转移方程,k个为一组,体积变化k*v,价值变化k*w
}
else
{
dp[j]=dp[j];
}
}
}
//将大部分相同物品以1、2、4、8...的方式拆分好之后剩下的相同物品再进行处理
for(int j=v1;j>=0;j--)
{
if(j>=s*v)
{
dp[j]=max(dp[j],dp[j-s*v]+s*w);//状态转移方程,剩下的s个为一组,体积变化s*v,价值变化s*w
}
else
{
dp[j]=dp[j];
}
}
}
cout<<dp[v1]<<endl;
return 0;
}
新一的宝藏搜寻 多重背包的优化
最新推荐文章于 2024-11-05 21:58:11 发布
这篇文章介绍了使用C++编程语言解决一个物品拆分问题的动态规划方法,通过状态转移方程计算组合中不同数量的物品的最大价值。
摘要由CSDN通过智能技术生成