目录
对初学者而言,阻抗和导纳是从直流电路(仅有电阻概念)进入到交流电路的关键。也是理解电容电感在电路中的延迟作用的关键。
在上篇文章中,我们讨论了相量的产生背景,他是因为交流电是用三角函数表示的,而三角函数的运算较为复杂,所以利用欧拉公式将三角函数封装成了复数的指数形式,但是他还是有一个旋转因子的干扰,我们再令t=0暂时不管这个旋转因子(因为所有变量的旋转因子都是一样的,最后同乘上即可)。于是得到了一个简单的复数指数,但是复数的指数相加仍然不好算,我们在此利用欧拉公式,把这个复数指数化为复平面上的坐标,最后用极坐标来表示他。最终达到了简化运算的目的。
在最后,我们还推导了电容、电感的VCR的相量形式。本篇文章我们将从这个推导式展开论述。
一、为什么需要阻抗和纳导
在直流电路中,我们只用电阻R和欧姆定律就能描述电流与电压的关系,因为直流电流方向不变,电容会“隔直流、通交流”,电感会“同直流、隔交流”,二者在直流电路中看起来没什么用处。
但到了交流电路(电流 / 电压随时间变化,比如家用 220V 交流电),情况完全不同:
- 电容会反复 “充电 - 放电”,电感会反复 “储磁 - 释磁”,它们会像电阻一样 “阻碍” 电流,但又不消耗电能(仅储存 / 释放能量);
- 此时电流与电压不再 “同相位”(比如电容电流会 “跑在” 电压前面,电感电流会 “落后” 电压),普通电阻无法描述这种 “阻碍 + 相位差” 的综合效果。
因此,我们需要两个新工具:阻抗(Z) 描述 “电路对交流电的总阻碍能力”,导纳(Y) 描述 “电路对交流电的总导通能力”—— 二者本质是 “阻碍” 与 “导通” 的对立概念,就像 “电阻” 和 “电导(G=1/R)” 的关系。
我们可以得出一个结论:阻抗和导纳是交流电中的电阻、电导的对应概念。但是他们又不直接消耗电能发热,只是会对交流电的相位产生阻碍,滞后亦或者是超前。
二、阻抗:交流电路的总阻碍
(1)阻抗的定义
类似于直流电路中,我们让相量的U比上相量的I,就得到了阻抗。这种阻碍不局限于普通电阻对电能的消耗,还包含了电容、电感对相位的偏移。
这里的每个符号都有明确物理意义,新手要先分清 “实部” 和 “虚部”:
- 实部 R:就是我们熟悉的 “电阻”(单位:欧姆 Ω),代表 “消耗电能的阻碍”(比如电阻器发热),电流与电压同相位(没有时间差);
- 虚部 jX:称为 “电抗”(X 是电抗的大小,j 是虚数单位,j²=-1,仅用来表示 “相位差”),代表 “不消耗电能的阻碍”(来自电容或电感),会导致电流与电压产生90° 相位差;
- Z:总阻抗(单位:Ω),是 “电阻 + 电抗” 的复数叠加,不是简单的数值相加(比如 R=3Ω、X=4Ω,总阻抗模值是√(3²+4²)=5Ω,不是 3+4=7Ω)。
(2)电抗的两种分身:感抗和容抗
由上一节我们推导的电容相量VCR可知:
所以电容的电流是超前电压90°的,对于电容的电抗我们称为容抗。相反的,由电感
可知电感的电压是超前电流90°的,对于电感的电抗我们称为感抗。
我们可以简单记忆:感性元件的电抗会导致电压超前90°;容性元件的电抗会导致电流超前90°。
关键提醒:电抗 X 是容抗和感抗的 “综合效果”—— 如果电路中既有电容又有电感,X = Xl - Xc(因为二者相位相反,会相互抵消)。比如 Xl=5Ω、Xc=3Ω,总电抗 X=2Ω;若 Xl=3Ω、Xc=5Ω,总电抗 X=-2Ω(负号仅代表 “容性主导”,不代表阻碍为负)。这是因为电抗是出现在复平面的概念,而阻抗=实数域电阻值+复数域电抗值。所以在计算阻抗的模值时候可以直接将其放在复平面坐标下,根据矢量的思想求解。
三、导纳:交流电路的总导通
(1)导纳的定义
类似上述阻抗的定义,我们将阻抗取倒数可得到导纳的定义。作用是把 “阻碍” 转化为 “导通”,方便并联电路计算(就像直流电路中 “电导” 比 “电阻” 更适合并联计算)。
因为 Y 是 Z 的倒数(Y=1/Z),所以导纳的复数形式与阻抗 “一一对应”:
Y = G + jB
同样拆解符号:
- 实部 G:称为 “电导”(单位:西门子 S),是电阻的 “导通能力”,G=1/R(电阻越大,电导越小,导通越弱);
- 虚部 jB:称为 “电纳”(B 是电纳的大小),是电抗的 “导通能力”,B=1/X(电抗越大,电纳越小,导通越弱);
- Y:总导纳(单位:S),是 “电导 + 电纳” 的复数叠加,同样遵循复数规则。
(2)电纳的两种分身:容纳和感纳
和电抗对应,电纳也分为 “容纳”(电容的导通能力)和 “感纳”(电感的导通能力),特性同样相反:
关键提醒:电纳 B 是容纳和感纳的 “综合效果”,且符号与电抗相反 ——B = Bc - Bl(因为电抗 X=Xl-Xc,而 B=1/X,所以符号会反转)。比如 Bc=5S、Bl=3S,总电纳 B=2S(容性主导,导通强);若 Bc=3S、Bl=5S,总电纳 B=-2S(感性主导,导通弱)。
注意:电纳对相位产生的偏移与电抗完全相反,因为电纳本身就是电抗的倒数。当你在使用电纳分析阻碍与导通能力的时候,如果最后得到的是容纳强,则说明容抗弱,进一步推导出感抗强,所以电压相对电流超前90°。相反的如果感纳强,则感抗弱,所以容抗强,所以电流超前电压90°。
电纳对相位的阻碍、导通作用与电抗相反。
四、总结与归纳
(1)电抗、电纳对相位的影响
我们上面推导了电抗与电纳对相位的影响,对此总结一下:
电抗为正的时候,感性强,电压超前;电抗为负的时候,容性强,电流超前。
电纳为正的时候,容性强,电流超前;电纳为负的时候,感性强,电压超前。

(2)总结
书上最后指出了几点指的我们注意:
(1)阻抗或者导纳是由内部的参数、结构、以及正弦电源的频率决定的。这是从电抗的定义式看出来的,其X=wL或者X=-1/wC;电纳同理。
(2)对于电抗、电纳类似于电阻和电导的关系,都是倒数转换。即由ZY=1。如果包含复数的话,则转化时候分母去模长的平方,实部分子对应不变,虚部分子添加负号。
(3)以前我们学过对电路的串并联技巧都可以用到这里,只需要把电阻替换成阻抗、电导替换成导纳即可,就好像我们对欧姆定律扩展了,把电抗也纳入了电阻分析的的范围
1272

被折叠的 条评论
为什么被折叠?



