一、阻抗与导纳
1、概述
(1)上一章中介绍的三种基本无源元件电阻、电感和电容的伏安特性相量形式如下所示。
(2)电阻、电感和电容的电压相量与电流相量之比等于一个复数,于是可以写出一个统一形式
式中,Z和Y分别称为元件的阻抗和导纳,该式可看成是欧姆定律的相量形式。
(3)应用相量法,端口的电压相量与电流相量的比值定义为该一端口的阻抗Z(又称为复阻抗),即有
2、阻抗的表示
(1)阻抗Z的极坐标形式:
(2)阻抗Z的代数形式:
二、正弦电流电流的相量分析法
1、RLC串联电路分析
(1)电阻、电感和电容的阻抗:
(2)对下图所示电路,可按照计算串联电阻的方式(也就是把元件的阻抗直接相加)计算RLC串联后整体的阻抗(复阻抗)。
①对于n个阻抗串联而成的电路,其等效阻抗为
②各个阻抗的电压分配为
(3)画电路的相量图时一般选电流为参考向量,根据各元件电流和电压的相位关系可以得到各元件电压向量的方向,根据已知元件电压的大小即可得到其电压向量的长度(模值),再根据回路上的KVL方程,用相量平移求和的法则,画出回路上各电压相量所组成的多边形,由此可得到电路未知电压的向量(也就是其幅值和相位)。
①当,即
时,称Z呈感性。(下图中的
是RLC串联电路的等效电感,由等效电抗计算而得)
②当,即
时,称Z呈容性。(下图中的
是RLC串联电路的等效电容,由等效电抗计算而得)
③当,即
时,称Z呈电阻性。
2、RLC并联电路分析
(1)电阻、电感和电容的导纳:
(2)对下图所示电路,可按照计算并联电阻的方式(也就是把元件的导纳直接相加)计算RLC串联后整体的导纳(复导纳)。
①对于n个阻抗并联而成的电路,其等效导纳为
②各个导纳的电流分配为
③当,即
时,称Y呈容性;当
,即
时,称Y呈感性。
(3)画电路的相量图时一般选电压为参考向量,根据各元件电流和电压的相位关系可以得到各元件电流向量的方向,根据已知元件电流的大小即可得到其电流向量的长度(模值),再根据节点上的KCL方程,用相量平移求和法则,画出节点上各支路电流相量组成的多边形,由此可得到电路未知电流的向量(也就是其幅值和相位)。(步骤和RLC串联电路相似,只是电压和电流倒置,这里不再赘述)
三、正弦稳态电路的功率
1、瞬时功率
(1)瞬时功率公式:
p>0,电路吸收功率;p<0,电路发出功率。
(2)瞬时功率公式的分解:
(3)瞬时功率的单位为瓦(W)。
2、平均功率
(1)平均功率实际上是电阻消耗的功率,又称为有功功率,是指瞬时功率在一个周期内的平均值。
(2)以瞬时功率一节的电路为基础,平均功率的公式为
①其中是功率因数角。对无源网络,功率因数角等于等效阻抗的阻抗角。
②是功率因数,
时为纯电抗电路(电路等效过后只有电容和电感),
时为纯电阻电路(电路等效过后只有电阻)。
(3)平均功率的单位为瓦(W)。
3、无功功率
(1)无功功率用大写字母Q表示,其定义为
(2)无功功率的单位为乏(var,无功伏安)。
(3)无功功率反映电路N与外界电路交换功率的大小,它由储能元件L和C决定。
4、视在功率
(1)视在功率表示额定电流和额定电压的乘积,用大写字母S表示,其定义为
(2)视在功率的单位为V·A。
(3)视在功率反映电器设备的容量。
5、复功率
(1)复功率用表示,定义为
(2)复功率表示了正弦稳态电路中有功功率P、无功功率Q和视在功率S的直角三角形关系。