题目背景
NOIP2018 提高组 D1T1
题目描述
春春是一名道路工程师,负责铺设一条长度为 �n 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 �n 块首尾相连的区域,一开始,第 �i 块区域下陷的深度为 ��di 。
春春每天可以选择一段连续区间 [�,�][L,R] ,填充这段区间中的每块区域,让其下陷深度减少 11。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 00 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 00 。
输入格式
输入文件包含两行,第一行包含一个整数 �n,表示道路的长度。 第二行包含 �n 个整数,相邻两数间用一个空格隔开,第 �i 个整数为 ��di 。
输出格式
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
输入输出样例
输入 #1复制
6 4 3 2 5 3 5
输出 #1复制
9
说明/提示
【样例解释】
一种可行的最佳方案是,依次选择: [1,6][1,6]、[1,6][1,6]、[1,2][1,2]、[1,1][1,1]、[4,6][4,6]、[4,4][4,4]、[4,4][4,4]、[6,6][6,6]、[6,6][6,6]。
【数据规模与约定】
对于 30%30% 的数据,1≤�≤101≤n≤10 ;
对于 70%70% 的数据,1≤�≤10001≤n≤1000 ;
对于 100%100% 的数据,1≤�≤100000,0≤��≤100001≤n≤100000,0≤di≤10000
AC代码如下:
#include <stdio.h>
#include <string.h>
int main(){
int i,j,n;
scanf("%d",&n);
int a[100010]={0};
for(i=0;i<n;i++){
scanf("%d",&a[i]);
}
int cnt=0; i=0;
while(i<n){
if(a[i]==0){
i++;
continue;
}
cnt++;
for(j=i;j<n;j++){
if(a[j]==0) break;
a[j]--;
}
}
printf("%d\n",cnt);
return 0;
}