微分方程相关概念
举例说明
可分离变量的微分方程
例题
齐次微分方程
例题
也可以适当改变自变量和因变量:
可化为齐次的方程
我们先求出一个普通齐次微分方程如下:
而可化为齐次的方程本质上是利用待定系数法进行对x与y的重定义,例子如下:
一阶线性微分方程
判断是否为一阶线性微分方程的依据:
一阶齐次线性微分方程
一阶非齐次线性微分方程
可降阶的高阶微分方程
1.
2. (不显y)
3.(不显x)
高阶线性微分方程
高阶微分方程解的结构
在分析解的结构之前,我先来了解什么叫齐次
定理一
那两个特解如果线性相关呢?
定理二
非齐次通解=齐次通解+非齐次特解
定理三
非齐次方程的两个特解之差=齐次方程的特解
定理四(广义叠加定理)
例题
高阶线性方程使用常数变易法
这方法的特点是:如果Cy1(x)是齐次线性方程的通解,那么,可以利用变换y=uy1(x)(这变换是把齐次方程的通解中的任意常数C换成未知函数u(x)而得到的)去解非齐次线性方程.这一方法也适用于解高阶线性方程。
常系数齐次线性微分方程
常系数齐次方程的三种解的结构
例题
常系数齐次方程的多重根
例题
常系数非齐次线性微分方程
本节只介绍两种可以直接用待定系数法求出y的特解情况的情形
情形一:y的特解=p(x)e^(nx)
特解的假设规则
直接上例题来进行理解吧,首先要求出齐次方程的通解,再设y的特解,假设y的特解是有门道的。
再看所给予的式子中的P(x)中选择如何假设Q(x)
例题
小结
大概步骤三步:
- 先设出特征方程(将给出的式子设成齐次线性方程),求出r1与r2,用此求出齐次方程的通解
- 再根据非齐次方程的等式右侧假设一个y的特解,代入回原方程式子,合并同类项。
- 整理完式子后,使用待定系数法。
情形二:y的特解=(p(x)coswx+q(x)sinwx)e^(nx)
特解的假设规则
1.Qm(x)的假设
2. k的系数
例题