微分方程(高等数学)

微分方程相关概念

 

举例说明 

可分离变量的微分方程 

例题 

 齐次微分方程

例题  

        也可以适当改变自变量和因变量:

 可化为齐次的方程

        我们先求出一个普通齐次微分方程如下:

        而可化为齐次的方程本质上是利用待定系数法进行对x与y的重定义,例子如下:

一阶线性微分方程 

判断是否为一阶线性微分方程的依据:

一阶齐次线性微分方程 

 

一阶非齐次线性微分方程 

可降阶的高阶微分方程 

1.   y^{(n)}=f(x) 

 

2.  y^{\prime\prime}=f(x,y^{\prime}) (不显y)

 

3.y^{\prime\prime}=f(y,y^{\prime})(不显x) 

 

高阶线性微分方程

 高阶微分方程解的结构 

         在分析解的结构之前,我先来了解什么叫齐次

定理一 

那两个特解如果线性相关呢?

定理二 

        非齐次通解=齐次通解+非齐次特解 

 

  

定理三 

        非齐次方程的两个特解之差=齐次方程的特解 

定理四(广义叠加定理) 

例题

 高阶线性方程使用常数变易法
 

        这方法的特点是:如果Cy1(x)是齐次线性方程的通解,那么,可以利用变换y=uy1(x)(这变换是把齐次方程的通解中的任意常数C换成未知函数u(x)而得到的)去解非齐次线性方程.这一方法也适用于解高阶线性方程。

常系数齐次线性微分方程 

常系数齐次方程的三种解的结构 

例题

 

常系数齐次方程的多重根 

 例题

常系数非齐次线性微分方程 

        本节只介绍两种可以直接用待定系数法求出y的特解情况的情形

情形一:y的特解=p(x)e^(nx) 

特解的假设规则 

         直接上例题来进行理解吧,首先要求出齐次方程的通解,再设y的特解,假设y的特解是有门道的。

        再看所给予的式子中的P(x)中选择如何假设Q(x)

例题 

 

小结 

        大概步骤三步:

  1. 先设出特征方程(将给出的式子设成齐次线性方程),求出r1与r2,用此求出齐次方程的通解
  2. 再根据非齐次方程的等式右侧假设一个y的特解,代入回原方程式子,合并同类项。
  3. 整理完式子后,使用待定系数法。

         

情形二:y的特解=(p(x)coswx+q(x)sinwx)e^(nx)

特解的假设规则

1.Qm(x)的假设 

2. k的系数

例题 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值