行列都可以换的:
一、行列式
行列式的行与列都可以换,其本质是因为行列式的倒置=行列式本身,行、列变换等价。
但需要注意:行列式的行列互换的时候,要乘个(-1),详情请看行列式的互换原则
求特征方程时的第一步——求特征值
注意特征方程第一步是行列式的计算法则,可以使用行列变换的
二、求矩阵的秩
行列变换都可以用,因为秩是非零子式最高阶数,行列变换不改变秩
只能换行的:
一、解线性方程组
只能用初等行变换,因为线性方程组求解本质是通过矩阵存储系数,通过初等行变换与方程组逐一同解变换(调换方程组中两个方程顺序)。
列变换相当于同一个方程中的系数发生改变,自然是不行的
求线性方程组中的非零解
求特征向量
二、判定线性方程组解的情况
我们判断线性方程组解的情况一般是由秩来处理,所以行列都可以换。
但是这类问题往往都会伴随方程组求解的问题,如果你前面移动了列,后面对线性方程组求解就不正确了,所以保险起见,这类判断解的情况只能换行
三、求列向量组的线性无关组
本质上也是线性方程组a与线性方程组b同解对应求方程组的解
四、向量组求秩
求秩是可以行列变换的,但是一般会遇到问线性表出关系,所以最好也是只用行变换