行列式(线性代数)

低阶行列式

        行列式:行数=列数,边界有两条竖线的算式,算式类型是

例题

 

行列式的几何意义 


得出结论如下:

行列式中向量线性相关的说法 

行列式的唯一性判断

 低阶行列式的计算

 行列式的定义(第二类行列式定义)

 全排列和对换

       

全排列:把n个不同的元素排成一列,叫做这n个元素的全排列。

        n个不同元素的所有排列的种数,通常用Pn表示。

 逆序与逆序数 

        逆序:若存在一个大数排在一个小数前面,则这一个对数构成“一个逆序”。

        逆序数:逆序的总个数

        奇偶排列:逆序数为"奇"称为奇排列,逆序数为"偶"称为偶排列

 对换

 行列数的原始定义

        行列式的原始定义:每一项均取自不同行不同列n个元素的乘积的“代数和”,共有n!项,其正负由“行标逆序数+列标逆序数”的奇偶性决定 

定义的应用

判断行列式的符号

 

 

 

计算行列式

几类重要的行列式 

   逆序数的首项和末项:

        从第n列到第1列有n-1个逆序,从第n-1列到第2列有n-2个逆序,一直这么递推

 

行列式的性质 

 性质一  行列式的转置

性质二   互换性质 


        一组排列中,若两个数对换,则排列的奇偶性发生改变,所以n!项的每一项,正负均发生改变所以行列式必然反号
 

互换性质说明两行(列)相同,该行列式等于0 

可得出推论:推论若行列式在两行(列)相同,其值为0。 

 性质三  倍乘性质

        注意:是对某一行(列)乘k=k乘原行列式。

 也可以用向量的思路来理解:

        k乘某一行,相当于将一条边延长k倍,所以行列式也扩大k倍

        

性质四  可拆性质 

性质五   倍加性质

 例题

 

行列式展开(行列式第三定义)

        低阶行列式的计算要比高阶行列式的计算要简便,我们考虑用低阶行列式来表示高阶行列式的问题,为此引进了余子式代数余子式的概念 

行列式展开定理

        需要注意:按行展开时,只看当行的,但当写代数余子式中的行列式是,要删去当行和当列的部分。

 例题 

替换法则 

 替换法则的推论

 例题  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值