给定一个 n×m的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m)处,至少需要移动多少次。
数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
输入样例:
5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
输出样例:
8
思路:从起点开始,往前走第一步,记录下所有第一步能走到的点,然后从所第一步能走到的点开始,往前走第二步,记录下所有第二步能走到的点,重复下去,直到走到终点。输出步数即可。这就是广度优先遍历的思路。
#include<iostream>
#include<cstring> //队列头文件
#include<queue>
using namespace std;
typedef pair<int,int> PII; //跟map一样
const int N=110;
int d[N][N]; //表示与起点的距离
int g[N][N];
int n,m;
void bfs(int a,int b)
{
queue<PII> q; //定义队列
q.push({a,b}); //插入元素
while(!q.empty()) //表示队列不空
{
PII start=q.front(); //队头
q.pop(); //弹出队头
int dx[4]={0,1,0,-1},dy[4]={-1,0,1,0}; //坐标向量
for(int i=0;i<4;i++)
{
int x=start.first+dx[i],y=start.second+dy[i];
if(g[x][y]==0) //表示该点没走过
{
g[x][y]=1;
d[x][y]=d[start.first][start.second]+1;
q.push({x,y});
}
}
}
cout<<d[n][m];
}
int main()
{
cin>>n>>m;
memset(g,1,sizeof(g));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>g[i][j];
}
}
bfs(1,1);
return 0;
}