C++ 素数(质数)的判定方法

 

 

素数的介绍:

素数定义:质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说,就是该数除了1和它本身以外不再有其他的因数;否则称为合数。根据算术基本定理,每一个,比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2.

方法一:暴力筛选法

思路:根据素数的定义,我们能想到:若要判断n是否是素数,我们可以通过循环for(i=2;i<=n-1;i++)来进行n%i的运算,最后借n能否被i整除,来判断n是否为素数;若n能被整除,则n是素代码实现:

#include<iostream>
using namespace std;
bool is_prime(int n)
{
	int i;
	for(i=2;i<=n-1;i++)
	{
		if(n%i==0)
		{
		 return false;//若n能被i整除,则返回false; 
		 break;
		}
    }
		return true;//否则,返回true; 
}
	int main()
	{
		int n;
		cin>>n;
		is_prime(n);
		if(is_prime(true))
		{cout<<"Yes"<<endl;}
		else cout<<"No"<<endl;
		return 0;
	}

 在暴力筛选法中,我们可以发现其为时间复杂度O(n),在此基础上,我们还可以优化将其变为时间复杂度O(sqrt(n)) .

优化原理:素数是因子为1和本身,若n不是素数,则一定是合数(一个合数一定含有小于它平方根的质因子)。假如该非素数为n=a*b,那么a,b一定有一个大于sqrt(n),一个小于sqrt(n)。所以必有一个小于或等于其平方根的因数,因此,验证n是否为素数时就只需要验证到n的平方根即可

(不使用算术平方根)代码实现:

#include<iostream>
using namespace std;
bool is_prime(int n)
{
	int i;
	if(n<2)return false;
	for(i=2;i*i<=n;i++)  //这里可以不必单独使用平方算术根来表示
	{
		if(n%i==0)
	 {
		return false;
		break;
	 }
	}
	return true;
}
int main()
{
	int n;
	cin>>n;
	is_prime(n);
	if(is_prime(true))
	{
		cout<<"Yes"<<endl;
	}
	else cout<<"No"<<endl;
	return 0;
}

 (使用算术平方根)代码实现:

#include<iostream>
#include<cmath>
using namespace std;
bool is_prime(int n)
{
	int i;
	if(n<2)return false;
	for(i=2;i<=sqrt(n);i++)
	{
		if(n%i==0)
	 {
		return false;
		break;
	 }
	}
	return true;
}
int main()
{
	int n;
	cin>>n;
	is_prime(n);
	if(is_prime(true))
	{
		cout<<"Yes"<<endl;
	}
	else cout<<"No"<<endl;
	return 0;
}

方法二:count(有且仅有两因子:1和本身)

思路;根据素数的定义得出结论:构成素数的因子只有两个,即1和它本身,则通过count number(因子数)可以来筛选素数。

代码实现:一般型

#include<iostream>
using namespace std;
int main()
{
	int i,n,count=0;
	cin>>n;
	for(i=1;i<=n;i++)
	{
		if(n%i==0)//筛选出因子只有1和它本身的数
		count++;
	}
	if(count==2)
	{
		cout<<"Yes"<<endl;
	}
	else cout<<"No"<<endl;
	return 0;
}

函数型:

#include<iostream>
using namespace std;
bool is_prime(int n)
{
	int i,count=0;
	for(i=1;i<=n;i++)
	{
		if(n%i==0)
		{count++;}
	}
	if(count==2) return true;
	else return false;
}
int main()
{
	int n;
	cin>>n;
	is_prime(n);
	if(is_prime(n))
	{
		cout<<"Yes"<<endl;
	}
	else cout<<"No"<<endl;
	return 0;
}

 方法三:素数表筛选法

素数表筛选法顾名思义就是将素数存储到一个表中,然后对需要判断的数在该表中查找,能找到的即为素数,否则不是素数。

思路:(查找原理)若一个数不能整除比它小的任何素数,那么这个数就是素数。缺点:效率低下

代码实现:

/*n:所要判断的数;
  j:素数表中素数的数; 
*/
#include<iostream>
using namespace std;
bool is_prime(int n)
{
	int i,j;
	for(i=0;i<j;i++)
	{
		if(n%primearray[i]==0)
		{
			return false;
			break;
		}
		return true;
	}
}

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值