实训中相关数据集,请联系博主邮箱"1438077481@qq.com",在邮箱内发送"iris.csv"即可快速获取,无任何套路,秉承开源精神!
1、导入模块
#导入模块
import numpy as np
import csv
2、获取数据
iris_data = []
#读取数据
with open(r"C:\Users\Dunky\Desktop\iris.csv") as csv1:
csv1_reader = csv.reader(csv1)
for row in csv1_reader:
iris_data.append(row)
# print(iris_data)
3、数据清理:去掉索引号
#数据清理:去掉索引号
iris_list = []
for row in iris_data[1:]:
iris_list.append(tuple(row[1:]))
# print(iris_list)
4、数据统计
#数据统计
#1、创建数据类型
datatype = np.dtype([("Sepal.Length",np.str_,40),
("Sepal.Width",np.str_,40),
("Petal.Length",np.str_,40),
("Petal.Width",np.str_,40),
("Species",np.str_,40)])
print(datatype)
#2、创建二维数组
iris_a1 = np.array(iris_list,dtype = datatype)
# print(iris_a1)
#3、将待处理数据的类型转化为float类型
PentalLength = iris_a1["Petal.Length"].astype(float)
# print(PentalLength)
#4、排序
PentalLength_sort = np.sort(PentalLength)
# print(PentalLength_sort)
#5、数据去重
PentalLength_Unique = np.unique(PentalLength)
print(PentalLength_Unique)
#对指定列求和、均值、标准差、方差、最小值、最大值
print(np.sum(PentalLength))
print(np.mean(PentalLength))
print(np.std(PentalLength))
print(np.var(PentalLength))
print(np.min(PentalLength))
print(np.max(PentalLength))