Numpy实训:读取并分析iris数据集中鸢尾花的相关数据

实训中相关数据集,请联系博主邮箱"1438077481@qq.com",在邮箱内发送"iris.csv"即可快速获取,无任何套路,秉承开源精神!

1、导入模块

#导入模块
import numpy as np
import csv

2、获取数据

iris_data = []
#读取数据
with open(r"C:\Users\Dunky\Desktop\iris.csv") as csv1:
    csv1_reader = csv.reader(csv1)
    for row in csv1_reader:
        iris_data.append(row)
# print(iris_data)

3、数据清理:去掉索引号

#数据清理:去掉索引号
iris_list = []
for row in iris_data[1:]:
    iris_list.append(tuple(row[1:]))
# print(iris_list)

4、数据统计

 

#数据统计
#1、创建数据类型
datatype = np.dtype([("Sepal.Length",np.str_,40),
                    ("Sepal.Width",np.str_,40),
                    ("Petal.Length",np.str_,40),
                    ("Petal.Width",np.str_,40),
                    ("Species",np.str_,40)])
print(datatype)

#2、创建二维数组
iris_a1 = np.array(iris_list,dtype = datatype)
# print(iris_a1)

#3、将待处理数据的类型转化为float类型
PentalLength = iris_a1["Petal.Length"].astype(float)
# print(PentalLength)

#4、排序
PentalLength_sort = np.sort(PentalLength)
# print(PentalLength_sort)

#5、数据去重
PentalLength_Unique = np.unique(PentalLength)
print(PentalLength_Unique)

#对指定列求和、均值、标准差、方差、最小值、最大值
print(np.sum(PentalLength))
print(np.mean(PentalLength))
print(np.std(PentalLength))
print(np.var(PentalLength))
print(np.min(PentalLength))
print(np.max(PentalLength))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值