#利用线性回归模型california房价预测
#调用API
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.metrics import mean_squared_error
#利用正规方程的优化方法进行预测:
def linear1():
#获取数据
california = fetch_california_housing()
#划分数据集
x_test,x_train,y_test,y_train = train_test_split(california.data,california.target,random_state = 22)
#标准化
transfer = StandardScaler()
# fit_transform 方法首先计算训练集的均值和标准差,然后使用这些统计量对训练集进行标准化
x_train = transfer.fit_transform(x_train)
# transform 方法使用训练集的均值和标准差对测试集进行标准化。这确保了训练集和测试集使用相同的缩放参数。
x_test = transfer.transform(x_test)
#预估器
# 创建 LinearRegression 预估器对象
estimator = LinearRegression()
# fit 方法用于将线性回归模型拟合到训练数据上。它会计算模型的系数和截距,使得模型能够最好地描述训练数据。
estimator.fit(x_train,y_train)
#得出模型
print("正规方程——权重系数:\n",estimator.coef_)
print("正规方程——偏置为:\n",estimator.intercept_)
#模型评估
y_predict = estimator.predict(x_test)
mse = mean_squared_error(y_test,y_predict)
print("MSE:\n",mse)
return None
#利用梯度下降优化方法进行预测
def linear2():
#获取数据
california = fetch_california_housing()
#划分数据集
x_train,x_test,y_train,y_test = train_test_split(california.data,california.target,random_state = 22)
#标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
#预估器
#(对于一个常数数值学习率)learning_rate = "constant"
#eta0 = n -->指定一个学习率;max_iter -->迭代次数
estimator = SGDRegressor(eta0=0.001,max_iter=10000)
estimator.fit(x_train,y_train)
#得出模型
print("梯度下降——权重系数:\n",estimator.coef_)
print("梯度下降——偏置:\n",estimator.intercept_)
#模型评估
y_predict = estimator.predict(x_test)
mse = mean_squared_error(y_test,y_predict)
print("MSE:\n",mse)
return None
if __name__ == "__main__":
linear1()
linear2()
线性回归模型--California房价预测
于 2025-04-10 19:57:01 首次发布