线性回归模型--California房价预测

#利用线性回归模型california房价预测
#调用API
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor
from sklearn.metrics import mean_squared_error
#利用正规方程的优化方法进行预测:
def linear1():
    #获取数据
    california = fetch_california_housing()
    
    #划分数据集
    x_test,x_train,y_test,y_train = train_test_split(california.data,california.target,random_state = 22)
    
    #标准化
    transfer = StandardScaler()
    # fit_transform 方法首先计算训练集的均值和标准差,然后使用这些统计量对训练集进行标准化
    x_train = transfer.fit_transform(x_train)
    # transform 方法使用训练集的均值和标准差对测试集进行标准化。这确保了训练集和测试集使用相同的缩放参数。
    x_test = transfer.transform(x_test)
    
    #预估器
    # 创建 LinearRegression 预估器对象
    estimator = LinearRegression()
    # fit 方法用于将线性回归模型拟合到训练数据上。它会计算模型的系数和截距,使得模型能够最好地描述训练数据。
    estimator.fit(x_train,y_train)
    
    #得出模型
    print("正规方程——权重系数:\n",estimator.coef_)
    print("正规方程——偏置为:\n",estimator.intercept_)
    
    #模型评估
    y_predict = estimator.predict(x_test)
    mse = mean_squared_error(y_test,y_predict)
    print("MSE:\n",mse)
    return None

#利用梯度下降优化方法进行预测
def linear2():
    #获取数据
    california = fetch_california_housing()
    #划分数据集
    x_train,x_test,y_train,y_test = train_test_split(california.data,california.target,random_state = 22)
    #标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    #预估器
    #(对于一个常数数值学习率)learning_rate = "constant"
    #eta0 = n -->指定一个学习率;max_iter -->迭代次数
    estimator = SGDRegressor(eta0=0.001,max_iter=10000)
    estimator.fit(x_train,y_train)
    #得出模型
    print("梯度下降——权重系数:\n",estimator.coef_)
    print("梯度下降——偏置:\n",estimator.intercept_)
    #模型评估
    y_predict = estimator.predict(x_test)
    mse = mean_squared_error(y_test,y_predict)
    print("MSE:\n",mse)
    return None
if __name__ == "__main__":
    linear1()
    linear2()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值