根据你提供的输出日志,模型训练过程已经完成,并且验证结果表明训练取得了显著进展。以下是对每个部分的详细解读和后续步骤建议。
1. 训练过程中的损失变化:
在训练的最后几轮(epochs 97 到 100),我们可以看到各项损失(box_loss
、seg_loss
、cls_loss
、dfl_loss
)的变化。你可以看到:
box_loss
(框损失):逐渐减少,说明模型的框定位能力得到了改善。seg_loss
(分割损失):也逐步降低,表明分割结果越来越好。cls_loss
(分类损失):逐渐下降,表明分类效果正在提高。
这些都表明模型正在有效地学习,损失在逐渐减小。
2. 验证集的评估结果:
模型在 100/100
epochs 后的验证表现如下:
Box(P)
和Box(R)
:框的精度和召回率都很高,尤其是Box(P)
为 0.991,Box(R)
为 0.971,表示模型对物体边界的预测效果很好。Mask(P)
和Mask(R)
:分割的精度和召回率也非常好,Mask(P)
为 0.991,Mask(R)
为 0.971,这意味着分割区域的预测与真实区域有很高的一致性。mAP50
和mAP50-95
:mAP50
为 0.982,mAP50-95
为 0.883,说明模型的整体分割效果非常好。
总的来说,模型的框定位和分割效果都有很大的提升。特别是 Mask
和 Box
的精度和召回率都非常高,这表明模型在实例分割任务上的表现不错。
3. 每个类别的详细性能:
-
Field ridge
类别:Box(P)
: 0.983Box(R)
: 0.968mAP50
: 0.989Mask(P)
: 0.983Mask(R)
: 0.968mAP50-95
: 0.634
-
Field
类别:Box(P)
: 1.0 (精度完美)Box(R)
: 0.975mAP50
: 0.838Mask(P)
: 0.974Mask(R)
: 0.992mAP50-95
: 0.867
可以看到 Field ridge
类别的 Mask
和 mAP
比 Field
稍微差一些,但是总体表现还是不错的。
4. 速度和效率:
- 处理速度:每张图像的处理时间为
19.8ms
,推理时间为0.6ms
,这意味着模型的推理速度非常快,可以在实际应用中迅速做出预测。
5. 训练的结论:
训练基本上是成功的,模型在分割任务上表现良好。特别是验证结果显示了高精度、高召回率,以及不错的 mAP
和 Mask
分数。
6. 后续步骤:
- 保存模型:训练结束后,模型已经保存在
runs/segment/train2/weights/best.pt
中。你可以使用这个模型文件进行推理或继续优化。 - 推理:如果你想用训练好的模型进行预测(推理),你可以使用
yolo task=segment mode=predict model=runs/segment/train2/weights/best.pt source=path_to_your_image
来进行实例分割。 - 继续训练:如果你想进一步提升模型,可以增加训练的 epoch 数量,或者尝试其他数据增强方法。
- 模型评估和优化:你可以检查训练过程中的具体指标,做进一步优化,比如调整学习率、增加数据量、改进标签等。
7. 性能提升建议:
- 数据增强:可以尝试更多的数据增强方式,比如对图像进行旋转、翻转、缩放等,这样可以提升模型的泛化能力。
- 更强的模型:如果
yolov8n-seg.pt
达到的效果不理想,可以尝试更大的模型(如yolov8l-seg.pt
),以提高精度。 - 更多的训练数据:如果数据集较小,增加更多标注数据(如果可能)可以进一步提高模型的性能。
总结:
- 你的模型训练已经成功完成,当前的性能不错,尤其是分割效果。
- 后续可以进行推理、保存模型、评估并根据实际需求进行优化。