【无标题】

根据你提供的输出日志,模型训练过程已经完成,并且验证结果表明训练取得了显著进展。以下是对每个部分的详细解读和后续步骤建议。

1. 训练过程中的损失变化

在训练的最后几轮(epochs 97 到 100),我们可以看到各项损失(box_lossseg_losscls_lossdfl_loss)的变化。你可以看到:

  • box_loss(框损失):逐渐减少,说明模型的框定位能力得到了改善。
  • seg_loss(分割损失):也逐步降低,表明分割结果越来越好。
  • cls_loss(分类损失):逐渐下降,表明分类效果正在提高。

这些都表明模型正在有效地学习,损失在逐渐减小。

2. 验证集的评估结果

模型在 100/100 epochs 后的验证表现如下:

  • Box(P)Box(R):框的精度和召回率都很高,尤其是 Box(P) 为 0.991,Box(R) 为 0.971,表示模型对物体边界的预测效果很好。
  • Mask(P)Mask(R):分割的精度和召回率也非常好,Mask(P) 为 0.991,Mask(R) 为 0.971,这意味着分割区域的预测与真实区域有很高的一致性。
  • mAP50mAP50-95mAP50 为 0.982,mAP50-95 为 0.883,说明模型的整体分割效果非常好。

总的来说,模型的框定位和分割效果都有很大的提升。特别是 MaskBox 的精度和召回率都非常高,这表明模型在实例分割任务上的表现不错。

3. 每个类别的详细性能

  • Field ridge 类别

    • Box(P): 0.983
    • Box(R): 0.968
    • mAP50: 0.989
    • Mask(P): 0.983
    • Mask(R): 0.968
    • mAP50-95: 0.634
  • Field 类别

    • Box(P): 1.0 (精度完美)
    • Box(R): 0.975
    • mAP50: 0.838
    • Mask(P): 0.974
    • Mask(R): 0.992
    • mAP50-95: 0.867

可以看到 Field ridge 类别的 MaskmAPField 稍微差一些,但是总体表现还是不错的。

4. 速度和效率

  • 处理速度:每张图像的处理时间为 19.8ms,推理时间为 0.6ms,这意味着模型的推理速度非常快,可以在实际应用中迅速做出预测。

5. 训练的结论

训练基本上是成功的,模型在分割任务上表现良好。特别是验证结果显示了高精度、高召回率,以及不错的 mAPMask 分数。

6. 后续步骤

  • 保存模型:训练结束后,模型已经保存在 runs/segment/train2/weights/best.pt 中。你可以使用这个模型文件进行推理或继续优化。
  • 推理:如果你想用训练好的模型进行预测(推理),你可以使用 yolo task=segment mode=predict model=runs/segment/train2/weights/best.pt source=path_to_your_image 来进行实例分割。
  • 继续训练:如果你想进一步提升模型,可以增加训练的 epoch 数量,或者尝试其他数据增强方法。
  • 模型评估和优化:你可以检查训练过程中的具体指标,做进一步优化,比如调整学习率、增加数据量、改进标签等。

7. 性能提升建议

  • 数据增强:可以尝试更多的数据增强方式,比如对图像进行旋转、翻转、缩放等,这样可以提升模型的泛化能力。
  • 更强的模型:如果 yolov8n-seg.pt 达到的效果不理想,可以尝试更大的模型(如 yolov8l-seg.pt),以提高精度。
  • 更多的训练数据:如果数据集较小,增加更多标注数据(如果可能)可以进一步提高模型的性能。

总结:

  • 你的模型训练已经成功完成,当前的性能不错,尤其是分割效果。
  • 后续可以进行推理、保存模型、评估并根据实际需求进行优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值