一.树的概念
1.概念
树是⼀种非线性的数据结构,它是由 n(n>=0)个有限结点组成⼀个具有层次关系的集合。把它叫
做树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1、T2、……、Tm ,其中每⼀个集合
Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵子树的根结点有且只有⼀个前驱,可以有0个
或多个后继。因此,树是递归定义的。
树形结构中,子树之间不能有交集,否则就不是树形结构。
非树形结构:
- 子树是不相交的(如果存在相交就是图了)
- 除了根结点外,每个结点有且仅有⼀个父结点
-
⼀棵N个结点的树有N-1条边
2.树的相关定义
3.树的表示
树结构相对线性表就⽐较复杂了,要存储表示起来就比较⿇烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩⼦表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这⾥就简单的了解其中最常用孩子兄弟表示法。
struct TreeNode
{
struct Node* child; //左边开始的第一个孩子结点
struct Node* brother; //指向其右边的下一个兄弟结点
int data; //结点中的数据域
};
4.树形结构实际应用场景
⽂件系统是计算机存储和管理⽂件的⼀种⽅式,它利⽤树形结构来组织和管理⽂件和⽂件夹。在⽂件系统中,树结构被⼴泛应⽤,它通过⽗结点和⼦结点之间的关系来表⽰不同层级的⽂件和⽂件夹之间的关联。
例如,文件系统的表示就是一种树形结构。
二.二叉树
1.概念与结构
在树形结构中,我们最常⽤的就是⼆叉树。
⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点加上两棵别称为左⼦树和右⼦树的⼆叉树
组成或者为空。
从上图可以看出⼆叉树具备以下特点:
⼆叉树不存在度⼤于 2 的结点⼆叉树的⼦树有左右之分,次序不能颠倒,因此⼆叉树是有序树。
注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的。
现实中的二叉树。
2.特殊的二叉树
满二叉树
⼀个⼆叉树,如果每⼀个层的结点数都达到最⼤值,则这个⼆叉树就是满⼆叉树。
也就是说,如果⼀个⼆叉树的层数为 k ,且结点总数是2^k-1,则它就是满⼆叉树。
完全二叉树
完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。对于深度为 K 的,有 n 个结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从1⾄ n 的结点⼀⼀对应时称之为完全⼆叉树。要注意的是满⼆叉树是⼀种特殊的完全⼆叉树。
二叉树的性质:
- 若规定根结点的层数为 1 ,则⼀棵⾮空⼆叉树的第i层上最多有2^i-1个结点
- 若规定根结点的层数为 1 ,则深度为 h 的⼆叉树的最⼤结点数是2^h-1
- 若规定根结点的层数为 1 ,具有 n 个结点的满⼆叉树的深度 log2(n+1)
- 对任何一棵二叉树, 如果度为0其叶结点个数为n1 , 度为2的分支结点个数为n2 ,则有 n1= n2+1
注意:关于第四点性质,在此处简单讲解一下:
二叉树是由一个个度为0的节点依次连接而成的,假设此时有1个度为0的节点A并插入一个节点B,此时A节点的度变为1,B节点的度依然还是0,度为0的节点数还是1个,度为1的节点数由0变成1个,而度为2的节点是由度为1的节点演化而来,当增加一个度为2的节点时,度为0的节点也会增加一个,类推即可得性质4.
3.二叉树的存储结构
⼆叉树⼀般可以使⽤两种结构存储,⼀种顺序结构,⼀种链式结构