pytorch 与深度学习环境安装

本文详细介绍了如何查找并安装NVIDIA显卡驱动,以及如何在Windows系统中安装适合PyTorch1.10.1的CUDA工具包。包括使用命令行工具检查驱动支持版本和在Anaconda环境中安装特定版本的PyTorch和cudatoolkit。
摘要由CSDN通过智能技术生成

1、NVIDIA 驱动安装与更新

 按如下步骤找到自己显卡的型号,可以看到我的显卡是 3060

有显卡驱动的,可以直接在桌面右键,找到英伟达驱动控制面板打开就好了。

没有显卡驱动去英伟达驱动官网 https://www.nvidia.cn/Download/index.aspx?lang=cn 打开驱动官网找到适合自己设备的选项就行。

下载安装完以后,我们查看支持 cuda 驱动的支持最高版本 cuda tookit。

按下 win+R 组合键,打开 cmd 命令窗口。输入如下的命令:

nvidia-smi

得到如下的结果,可以看到我的显卡驱动支持的最高版本 cuda tookit 是 12.0,版本是 向下兼容的,因此只要安装向下兼容的 cuda tookit 版本即可。

2、pytorch 的 GPU 深度学习环境安装

输入如下 pytorch 下载网址:https://pytorch.org/,打开的网址如下图所示(随着时间的流程官网 页面也会更新)。

将页面往下滑动,出现如下界面,可以看到当前最新的版本为 2.0.1 版本,对应的 cuda tookit 有 11.7 和 11.8,安装方式有 pip 和 cuda,还有对应的电脑系统。由于我们要用的是 1.10.1 版本的 pytorch 和 cuda tookit 有 11.3,因此点图中红框的连接,找之前的版本。

不断往下滑动,找到对应的 1.9.1 版本,复制红框中的链接

进入 anaconda 自己创建的环境,复制上述的命令,加载对应的依赖包,输入 y,进行对应的 pytorch 和 cudatookit 安装。中间可能会因为网络的原因导致下载对应的安装包失败,就需要从新输入该命令,使 其恢复下载,已经下载好的包不会在次下载,只会下载没有安装好的包。

下载完成以后,输入如下的命令查看环境中的安装包:

Conda list

会得到该环境下的所有环境包,(该图只展示了部分)

查看是否有安装好的对应版本的 pytorch 和 cudatoolkit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值