多目标优化算法
文章平均质量分 89
普通网友
这个作者很懒,什么都没留下…
展开
-
2024最新算法:鹦鹉优化算法(Parrot optimizer,PO)求解23个基准函数
鹦鹉优化算法(Parrot optimizer,PO)由Junbo Lian等人于2024年提出的一种高效的元启发式算法,该算法从驯养的鹦鹉中观察到的觅食、停留、交流和对陌生人行为的恐惧中汲取灵感。这些行为被封装在四个不同的公式中,以促进寻找最佳解决方案。与遵循单独探索和开发阶段的传统元启发式算法相比,PO 群体中的每个个体在每次迭代期间都会随机表现出这四种行为中的一种。这种方法更恰当地表示了在驯化鹦鹉中观察到的行为随机性,并显着增强了种群多样性。通过偏离传统的勘探-开采两阶段结构,PO有效地降低了被困在局原创 2024-03-03 11:47:56 · 1318 阅读 · 0 评论 -
五种多目标优化算法(MOCS、MOFA、NSWOA、MOAHA、MOPSO)性能对比(提供MATLAB代码)
多目标优化算法是用于解决具有多个目标函数的优化问题的一类算法。其求解流程通常包括以下几个步骤:1. 定义问题:首先需要明确问题的目标函数和约束条件。多目标优化问题通常涉及多个目标函数,这些目标函数可能存在冲突,需要在不同目标之间进行权衡。2. 生成初始解集:通过随机生成或者其他混沌映射生成一组初始解集。这些初始解集通常是在可行解空间内随机分布的。3. 评估解集:对初始解集中的每个解进行评估,计算其在各个目标函数上的值。这些值可以用来衡量解的优劣程度。原创 2024-02-25 15:08:32 · 1639 阅读 · 0 评论