2024最新算法:斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)求解23个基准函数(提供MATLAB代码)

一、斑翠鸟优化算法

斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO),是由Abdelazim Hussien于2024年提出的一种基于群体的新型元启发式算法,它从自然界中观察到的斑翠鸟独特的狩猎行为和共生关系中汲取灵感。PKO 算法围绕三个不同的阶段构建:栖息/悬停猎物(探索/多样化)、潜水寻找猎物(开发/集约化)和培养共生关系。这些行为方面被转化为数学模型,能够有效地解决不同搜索空间中的各种优化挑战。

参考文献:

[1]Pied Kingfisher Optimizer: A new bio-inspired algorithm for solving numerical optimization and industrial engineering problems

二、23个函数介绍

参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、PKO求解23个函数

3.1部分代码

close all ;
clear
clc
Npop=30;                
Function_name='F8';     % Name of the test function that can be from F1 to F23 ( 
Tmax=500;              
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_fit,Best_pos,Convergence_curve]=PKO(Npop,Tmax,lb,ub,dim,fobj);
figure('Position',[100 100 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',3)
title('Search space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('PKO')
saveas(gca,[Function_name '.jpg']);


display(['The best solution is ', num2str(Best_pos)]);
display(['The best fitness value is ', num2str(Best_fit)]);


3.2部分结果

四、完整MATLAB代码

文件夹夹内包含该算法求解23个函数的完整MATLAB代码,点击main.m即可运行。

PKO (Partial Knowledge Optimization) 算法是一种用于解决优化问题的搜索策略,它结合了局部搜索和全局搜索的特点。在MATLAB中实现PKO算法通常涉及到自定义函数、遗传算法(GA)或其他全局优化工具的使用,因为PKO可能作为搜索方法被嵌入到这些算法中。 以下是一个简单的MATLAB代码片段,展示了如何使用GA作为基础,并添加PKO策略的示例: ```matlab % 导入必要的工具箱 addpath('GlobalOptimization Toolbox'); % 假设你已经安装了这个工具箱 % 定义目标函数(这里假设是一个简单的二次函数) fun = @(x) sum(x.^2); % PKO参数设置 popSize = 50; % 种群大小 numGenerations = 100; % 迭代次数 mutationProb = 0.1; % 变异概率 eliteRatio = 0.1; % 保留精英比例 % 定义PKO部分知识更新 pkoparams = struct('mutationRate', mutationProb, ' EliteSize', floor(popSize * eliteRatio)); % 初始化GA options = gaoptimset('PopulationSize', popSize, ... 'Generations', numGenerations, ... 'MutationFcn', 'mutation', ... 'MutationFcnParam', pkoparams); % GA优化 [x, fval] = ga(fun, [], [], options); % 打印结果 fprintf('Best solution: %s, with objective value: %f\n', mat2str(x), fval); ``` 请注意,这只是一个基本的示例,实际的PKO算法实现可能会更复杂,包括适应性地调整搜索参数、适应度函数的计算等。如果你需要详细了解如何在MATLAB中实现完整的PKO算法,建议查阅相关文献或使用已有的MATLAB库,如Particle Swarm Optimization(PSO)库,因为PKO可能需要特定的编码方式来结合局部搜索策略。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值