PINN+傅里叶变换,冲上Nature!想发高分就看这篇!

PINN重磅升级!与傅里叶变换结合,一举拿下Nature!在训练数据减少90%的情况下,预测性能依旧飙升!

实际上,PINN+傅里叶变换,近来在各大顶会也都是“顶流”!NeurIPS、ICML、ICLR等都有多篇!比如训练速度提升10倍的FNODEs;模型误差降低100倍的Fourier FINNs……

主要在于:两者结合,不仅在提升模型的准确性、计算效率,可解释性方面作用显著。同时,还克服了PINN学习高频和多尺度目标解时效果不佳的缺陷,使其能在更多领域大展身手,像是图像处理、信号处理等。这便也给我们论文创新,提供了空间!

由此也可见,这是个非常有前景的方向。且目前其还不算卷,想发论文的伙伴,可以多关注。为方便大家研究的进行,我还给大家准备了10种创新思路及代码

论文原文+开源代码需要的同学看文末

From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems

内容:文章提出了一种名为傅里叶神经常微分方程的新框架,用于高效且稳健地建模复杂系统。该框架通过傅里叶分析直接匹配目标向量场,从而训练神经常微分方程,减少了对计算图的依赖,并引入了数据增强策略以提高模型的鲁棒性和准确性。在多个代表性复杂系统上的实验结果表明,FNODEs在训练时间、动态预测和鲁棒性方面优于现有方法。

Global-local Fourier Neural Operator for Accelerating Coronal Magnetic Field Model

内容:文章介绍了一种名为全局-局部傅里叶神经算子的深度学习方法,用于加速模拟太阳日冕磁场。GL-FNO包含两个分支:全局分支用于重建全局特征,局部分支用于捕捉细节。研究结果表明,GL-FNO在准确性、计算效率和可扩展性方面优于其他最先进的深度学习方法,并且能够显著加速磁流体动力学模拟,同时提供可靠的预测能力,对理解空间天气动力学做出重要贡献。

Physics-Informed Neural Operators with Exact Differentiation on Arbitrary Geometries

内容:文章介绍了一种名为EDAM的新方法,它是首个能够在任意几何形状上计算物理信息神经算子的精确梯度的方法。EDAM通过扩展几何信息神经算子并引入可微分的权重函数和邻居缓存机制,实现了在保持GINO效率的同时进行精确梯度计算。实验结果表明,EDAM在性能上与其他PINO方法相当,且是首个能够处理任意输出点查询的方法。

Solving a class of multi-scale elliptic PDEs by Fourier-based mixed physics informed neural networks

内容:文章介绍了一种基于傅里叶混合物理信息神经网络的新方法,用于解决具有多尺度特性的椭圆偏微分方程。与传统的物理信息神经网络相比,FMPINN通过引入一个关于粗糙系数的辅助变量(通量变量)来避免因多尺度PDEs的振荡系数引起的神经切线核矩阵病态问题。

码字不易,欢迎大家点赞评论收藏!

关注下方《AI科研技术派》

回复【FPNN】获取完整论文

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值