©作者|坚果
来源|神州问学
引言
马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIA H100 GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Blackwell与Gaudi 3芯片的设计优化路径,不难发现GPU芯片制造商已在不同程度上汲取了存算一体技术的精髓,尤其侧重于近存计算架构的采纳,以此直面大模型对高算力与高存储需求的挑战。
存算一体技术详解
存算一体(Computational Memory或In-Memory Computing)的概念并非新近才出现,而是计算机科学领域一个长期的研究方向。它的起源可以追溯到早期计算机架构的探索,旨在克服冯·诺依曼架构的局限性,特别是数据传输带宽瓶颈(通常称为“内存墙”)的问题。
存算一体技术的过去和现在
追溯至上世纪80年代,存算一体的概念初现端倪,彼时研究者开始探讨如何在存储器内部直接进行计算,以减少数据在处理器与内存之间频繁移动带来的延迟与能耗。然而,受限于当时的材料科学与制造工艺,早期的尝试多停留在理论探索与初步原型阶段。进入21世纪,随着纳米科技、新材料与先进制造技术的飞速发展,存算一体技术迎来了突破性进展。新型非易失性存储器,如相变存储器(PCM)、磁阻随机存取存储器(MRAM)和电阻式随机存取存储器(RRAM),因其具备高速度、低功耗及非易失性等特点,成为实现存算一体的关键载体。这些存储技术不仅能够存储信息,还能在其存储单元上直接执行基本逻辑运算,从而大幅缩短数据传输距离,显著提升整体计算效能。近年来,存算一体技术在学术界与产业界均获得了广泛关注与投资,多家科研机构与企