目标
在本教程中,您将学习如何:
- 使用 OpenCV 函数 copyMakeBorder() 设置边框(为图像添加额外填充)。
理论
-
注意
下面的解释属于 Bradski 和 Kaehler 所著的《Learning OpenCV》一书。
-
在之前的教程中,我们学习了使用卷积对图像进行操作。自然而然出现的一个问题是如何处理边界。如果评估点位于图像的边缘,我们如何卷积它们?
-
大多数 OpenCV 函数所做的是将给定的图像复制到另一个稍大的图像上,然后自动填充边界(通过下面的示例代码中解释的任何方法)。这样,就可以毫无问题地在所需的像素上执行卷积(操作完成后会剪掉额外的填充)。
-
在本教程中,我们将简要探讨为图像定义额外填充(边框)的两种方法:
- BORDER_CONSTANT:用常量值(即黑色或\(0\))填充图像
- BORDER_REPLICATE:将原始文本最边缘的行或列复制到额外的边框。
这将在“代码”部分中更清楚地看到。
-
这个程序是做什么的?
-
加载图像
-
让用户选择在输入图像中使用哪种填充。有两个选项:
- 常量值边框:对整个边框应用常量值的填充。此值将每 0.5 秒随机更新一次。
- 复制的边框:边框将从原始图像边缘的像素值复制。
用户通过按“c”(常量)或“r”(复制)来选择任一选项
-
当用户按“ESC”时,程序结束
-
法典 C++爪哇岛蟒
教程代码如下所示。
您也可以从这里下载
#include“opencv2/imgproc.hpp”
#include“opencv2/imgcodecs.hpp”
#include “opencv2/highgui.hpp”
使用命名空间 CV;
声明变量
垫子 src, dst;
int 顶部、底部、左侧、右侧;
int borderType = BORDER_CONSTANT;
const char* window_name = “copyMakeBorder 演示”;
RNGrng(12345);
int main( int argc, char** argv )
{
const char* imageName = argc >=2 ?argv[1] : “莉娜.jpg”;
加载图像
src = imread( samples::findFile( imageName ), IMREAD_COLOR );加载图片
检查图像是否加载正常
if( src.空()) {
printf(“打开图像时出错\n”);
printf(“ 程序参数: [image_name – default lena.jpg] \n”);
返回 -1;
}
此程序的简要操作方法
printf( “\n \t copyMakeBorder 演示:\n” );
printf( “\t -------------------- \n” );
printf( “ ** 按 ‘c’ 将边框设置为随机常量值 \n”);
printf( “ ** 按 ‘r’ 设置要复制的边框 \n”);
printf( “ ** 按 ‘ESC’ 退出程序 \n”);
namedWindow( window_name, WINDOW_AUTOSIZE );
初始化筛选器的参数
顶部 = (int) (0.05*src.行);底部 = 顶部;
左 = (int) (0.05*src.cols);右 = 左;
为(;😉
{
标量值( rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255) );
copyMakeBorder( src, dst, top, bottom, left, right, borderType, value );
imshow( window_name, dst );
字符 c = (char)waitKey(500);
如果( c == 27 )
{ 破; }
否则 if( c == ‘c’ )
{ borderType = BORDER_CONSTANT; }
否则 if( c == ‘r’ )
{ borderType = BORDER_REPLICATE; }
}
返回 0;
}
解释 C++爪哇岛蟒
声明变量
首先,我们声明我们将要使用的变量:
声明变量
垫子 src, dst;
int 顶部、底部、左侧、右侧;
int borderType = BORDER_CONSTANT;
const char* window_name = “copyMakeBorder 演示”;
RNGrng(12345);
特别值得一提的是变量 rng,它是一个随机数生成器。我们用它来生成随机边框颜色,我们很快就会看到。
加载图像
像往常一样,我们加载源图像 src:
const char* imageName = argc >=2 ?argv[1] : “莉娜.jpg”;
加载图像
src = imread( samples::findFile( imageName ), IMREAD_COLOR );加载图片
检查图像是否加载正常
如果( src.empty()) {
printf(“打开图像时出错\n”);
printf(“ 程序参数: [image_name – default lena.jpg] \n”);
返回 -1;
}
创建窗口
在简要介绍如何使用该程序之后,我们创建一个窗口:
namedWindow( window_name, WINDOW_AUTOSIZE );
初始化参数
现在,我们初始化定义边框大小(顶部、底部、左侧和右侧)的参数。我们给它们的值是 src 大小的 5%。
初始化筛选器的参数
顶部 = (int) (0.05*src.rows);底部 = 顶部;
左 = (整数) (0.05*src.cols);右 = 左;
圈
程序在无限循环中运行,而未按下 ESC 键。如果用户按“c”或“r”,borderType 变量将分别取值 BORDER_CONSTANT 或 BORDER_REPLICATE:
字符 c = (char)waitKey(500);
如果( c == 27 )
{ 破; }
否则 if( c == ‘c’ )
{ borderType = BORDER_CONSTANT; }
否则 if( c == ‘r’ )
{ borderType = BORDER_REPLICATE; }
随机颜色
在每次迭代中(0.5 秒后),随机边框颜色(值)都会更新…
标量值( rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255) );
此值是在 [0,255] 范围内随机选取的一组三个数字。[0,255]
在图像周围形成边框
最后,我们调用函数 copyMakeBorder() 来应用相应的填充:
copyMakeBorder( src, dst, top, bottom, left, right, borderType, value );
- 参数是:
- src:源图像
- dst:目标映像
- top、bottom、left、right:图像两侧边框的长度(以像素为单位)。我们将它们定义为图像原始大小的 5%。
- borderType:定义应用的边框类型。对于此示例,它可以是常量,也可以是复制的。
- value:如果 borderType BORDER_CONSTANT,则此值用于填充边框像素。
显示结果
我们在之前创建的图像中显示输出图像
imshow( window_name, dst );
结果
-
编译完上面的代码后,您可以执行它,并给出图像的路径作为参数。结果应为:
- 默认情况下,它以设置为 BORDER_CONSTANT 的边框开头。因此,将显示一系列随机彩色边框。
- 如果按“r”,边框将成为边缘像素的复制品。
- 如果按“c”,随机彩色边框将再次出现
- 如果按“ESC”,程序将退出。
下面是一些屏幕截图,显示了边框如何更改颜色以及BORDER_REPLICATE选项的外观:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓