在AI技术席卷各行各业的今天,大型语言模型(LLM)以其强大的语言能力备受瞩目。然而,在医美这一高度专业化、信息密集且安全要求极高的领域,通用大模型往往显得“知其然,不知其所以然”,甚至可能产生误导性信息。
如何让大模型真正成为医美行业的“行家”?
答案在于“知识图谱(KG)+检索增强生成技术(RAG)”这一黄金组合。
前者为模型注入专业灵魂,后者则让这份专业能力真正落地。
第一步
医美知识图谱,为RAG打造“精准导航系统”
检索增强生成(RAG)技术允许大模型在回答问题前,先从外部知识库中检索相关信息,作为生成答案的依据。这就像给大模型一个开放式的“参考书架”。
但在医美领域,这个“书架”如果只是杂乱无章的文档堆砌,RAG的检索过程就会困难重重:
术语迷宫:同一种治疗可能有多种俗称和学名,不同品牌的同类产品成分、规格、适应症可能差异巨大。关键词检索很容易混淆或遗漏关键信息。
关系壁垒:项目、产品、成分、适应症、禁忌症、副作用、设备、机构、医生资质等之间存在复杂的、非线性的关联,简单检索难以捕捉。
信息鸿沟:很多关键信息(如某种成分对特定肤质的潜在长期影响)可能隐藏在多份文献或数据中,需要整合才能获得完整图景。
这时候,医美知识图谱的价值就凸显出来了。知识图谱并非简单的信息罗列,而是将医美领域的知识结构化、网络化。它定义了核心的“实体”(如热玛吉、玻尿酸、敏感肌、妊娠期、NMPA认证)以及它们之间的“关系”(如适用于、禁用于、包含成分、可能引起、认证机构是)。
那知识图谱如何直接赋能RAG的检索环节?
01、从“关键词匹配”到“语义理解”:
知识图谱让 RAG 系统能理解查询背后的深层含义。当用户问“皮肤薄的人适合做光子嫩肤吗?”,系统不仅能找到“光子嫩肤”,还能沿着图谱关系找到“光子嫩肤”-“注意事项”-“皮肤屏障薄弱者需谨慎”或“推荐能量参数范围”等更精确、结构化的信息。
02、精准定位,而非泛泛而谈:
通过实体和关系链接,RAG 可以精确检索到特定场景下的知识点。例如,直接定位到“某品牌玻尿酸”针对“特定适应症”的“官方推荐剂量”和“相关临床研究文献”。
03、挖掘隐含关联:
知识图谱使 RAG 能够发现文档中未直接说明的关系。如果A项目使用B设备,B设备有C禁忌症,即使没有文档直接说“A项目有C禁忌症”,RAG 也能通过图谱推理出这一潜在风险信息。
04、消除歧义:
图谱的结构化特性帮助 RAG 区分名称相似但性质不同的实体,如区分不同厂商的同类设备、不同浓度的有效成分等。
本质上,医美知识图谱为 RAG 系统装上了一个“专业导航仪”和“关系探测器”,使其能够在庞杂的医美信息海洋中,快速、准确地检索到最相关、最可靠、结构化的知识片段。
第二步
RAG,将“专业知识养分”精准注入大模型
有了医美知识图谱提供的“高纯度知识养料”,RAG就能像一名经验丰富的医美顾问,为大模型提供精准的参考答案。
01、提供高质量、高相关的“上下文”:
RAG将从知识图谱中检索到的精准、结构化的信息,作为提示的一部分或背景知识,提供给大模型。这相当于给大模型递上了一份条理清晰、重点突出的“参考答案要点”。
02、显著减少“幻觉”:
由于输入的依据是经过知识图谱筛选和结构化的可靠信息,大模型生成答案时就有了坚实的“事实基础”,大大降低了凭空捏造或错误推理的可能性。
03、提升回答的专业度和准确性:
基于精准的知识输入,大模型能够生成更符合医美行业规范、术语使用更准确、逻辑更严谨的回答。它能解释复杂机制、对比不同方案优劣、提示潜在风险,表现得像一个经验丰富的医美顾问。
04、增强答案的可解释性和可信度:
由于 RAG 的检索过程可以追溯到知识图谱中的具体节点和关系,大模型生成的答案就有了明确的“证据链”,更容易让人信服,也便于核查。
05、实现个性化与精细化:
结合用户具体情况(如肤质、过敏史等,这些也可作为图谱实体输入),由知识图谱赋能的 RAG 可以检索到高度个性化的信息,再由大模型生成量身定制的建议。
简单来说,知识图谱优化了RAG的“输入端”(检索质量),而优化后的 RAG 则极大地改善了大模型的“输出端”(生成质量),使其表现出真正的医美专业水准。
当知识图谱遇上众盟超级波
在我们直播的场景中,这套技术组合正展现出巨大的潜力,为医美行业的经营和服务带来新的体验,尤其是在辅助咨询师工作这一块。
01、Deepseek院长部署到院:
它能够将医美专业知识库、机构专家数据库、直播活动数据库、客户偏好数据库中的数据,巧妙地接入到 Deepseek 模型当中,并且无缝部署在众盟超级波小程序里。
这样,医美机构就可以拥有一个品牌专属的“AI全能助手”,不再受通用模式的限制,完全按照自身的特色与需求开展业务,24小时在线。
02、Deepseek面诊:
当用户上传一张面部照片,系统就能通过AI技术分析出皮肤的各种问题,再结合强大的知识图谱,然后给出具体的改善建议,并推荐合适的产品或服务。
03、Deepseek咨询师助手:
当客户进入社群或直播间,Deepseek咨询师助手就像一台隐形雷达开始工作。TA看了哪款项目?停留了多久?反复对比了哪些产品?甚至犹豫时的小动作……这些行为轨迹都可以被AI瞬间捕捉,转化为跟进方案,直接推送到咨询师手机,方便跟单。
最后
医美知识图谱与RAG 的结合,就像给大模型插上了 “专业的翅膀”,让它从一个 “通用型选手” 变成了 “医美领域的行家里手”。在直播场景中,这种技术组合不仅提升了直播的专业性和互动性,更让用户感受到了 “被理解” 和 “被重视”。
在这个技术与行业深度融合的时代,我们有理由相信,医美行业的未来将更加美好,而这一切,都始于知识图谱与 RAG 为大模型开启的 “专业之旅”。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓