1. Agent工作流
最近吴恩达教授 Andrew.Ng 在 deeplearning.ai来信中表示是大语言模型 Agents工作流将是AI领域中一个关键的趋势,并且有可能在今年推动大规模的人工智能进步——甚至可能比下一代基础模型更甚。
I think AI agent workflows will drive massive AI progress this year — perhaps even more than the next generation of foundation models. This is an important trend, and I urge everyone who works in AI to pay attention to it. – Andrew.Ng
我们通常在ChatGPT中希望一次输入就能获得期望的结果,然而结果通常并不理想。我们会根据响应一次一次的提示ChatGPT修正答案,最终获得期望的输出。问题来了,我们是否可以将这种流程规范化呢?
业界有人提出了Agents workflow,在一个工作流中,我们可以要求LLM多次迭代文档,最终输出高质量的答案。它通过模仿人类解决问题的迭代方法,使得人工智能生成的输出更加精确和细致。这种方法不仅利用了大型语言模型的优势,还通过引入反馈循环来弥补其不足,从而实现持续改进。通过规划、行动、审查和调整的循环过程,人工智能可以产生更高质量的结果。吴教授的团队在Human Eval这个数据集上对此进行了测试,并获得了如下的图表。Human Eval是论文《Evaluating Large Language Models Trained on Code》中提到一个代码评测标准。
从上图中我们可以看出,GPT-3.5和GPT-4在zero-shot中分别获得了48%和67%左右的正确率,而通过使用Agent workflow,有些Agent在GPT-3.5上甚至达到了95%的准确率。可见通过迭代Agent workflow实现的性能提升远远超过了从GPT-3.5到GPT-4的改进。这一发现强调了Agent workflow在提高人工智能性能方面的重要性。甚至能让GPT-5提前到来。吴教授总结了当前的业界研究,提出了四种工作流设计模式。
- 反思 Reflection: LLM反思自己的工作并提出改进的方法。
- 工具使用 Tool use: 给LLM提供工具,如网络搜索、代码执行或任何其他功能,以帮助它收集信息、采取行动或处理数据。
- 规划 Planning: LLM制定并执行一个多步骤计划来实现目标(例如,为文章编写大纲,然后进行在线研究,然后写草稿,等等)。
- 多Agent协作 Multi-agent collaboration: 多个Agent协作,分配任务并讨论辩论想法以此提出比单个Agent更好的解决方案。
2. Agent系统概述
此外,Open AI的应用主管Liliang Weng在2023年6.23撰写的一篇博客《LLM Powered Autonomous Agents》也提出了如下自动化Agent架构。这篇博客非常值得一读,系统的描述了一个Agent工作流类似AutoGPT,BabyAGI等利用LLM作为大脑自动完成任务的流程和核心组件。
2.1 概述
- LLM作为Agent系统的大脑,负责规划、反思、记忆和工具使用等关键功能。
- 规划包括任务分解和自我反思,使代理能够高效处理复杂任务。
- 记忆分为短期记忆和长期记忆,短期记忆涉及上下文学习,长期记忆则利用外部向量存储和快速检索。
- 工具使用涉及调用外部API来获取缺失的信息或执行特定任务。
2.2 规划
- 任务分解:使用链式思考(Chain of Thought, CoT)和思维树(Tree of Thoughts, ToT)等技术,将复杂任务分解为更小、更易管理的子任务。
- 自我反思:通过ReAct和Reflexion等框架,Agent能够进行自我批评和反思,从而改进未来的行动。
2.3 记忆
- 介绍了人类大脑中的不同类型的记忆,并将它们与Agent系统中的记忆机制相映射。
- 讨论了最大内积搜索(Maximum Inner Product Search, MIPS)和相关的算法,如局部敏感哈希(LSH)、近似最近邻(ANNOY)、层次导航小世界(HNSW)和Facebook AI相似性搜索(FAISS)等,用于优化外部记忆的检索速度。
2.4 工具使用
- 讨论了人类使用工具的特点,并探讨了如何将这一特性应用到LLM中,以扩展模型的能力。
- 提到了MRKL(模块化推理、知识和语言)架构,它结合了专家模块和通用LLM作为路由器。
- 介绍了TALM(工具增强的语言模型)和Toolformer,这些是微调LM以学习使用外部工具API的方法。
- 举例了ChatGPT插件和OpenAI API调用,展示了实际中增强工具使用能力的例子。
3. 下一步
下一篇我们将深入Agent workflow的Reflection,并结合之前搭建的Llama.cpp来测试验证。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓