如何在 TensorRT-LLM 中支持 Qwen 模型

简介: 大型语言模型正以其惊人的新能力推动人工智能的发展,扩大其应用范围。然而,由于这类模型具有庞大的参数规模,部署和推理的难度和成本极高,这一挑战一直困扰着 AI 领域。此外,当前存在大量支持模型部署和推理的框架和工具,如 ModelScope 的 Model Pipelines API,和 HuggingFace 的 Text Generation Inference 等,各自都有其独特的特点和优势。然而,这些工具往往未能充分发挥 GPU 的性能。
在这里插入图片描述

如何在NVIDIA TensorRT-LLM中支持Qwen模型

背景介绍

大型语言模型正以其惊人的新能力推动人工智能的发展,扩大其应用范围。然而,由于这类模型具有庞大的参数规模,部署和推理的难度和成本极高,这一挑战一直困扰着 AI 领域。此外,当前存在大量支持模型部署和推理的框架和工具,如 ModelScope 的 Model Pipelines API,和 HuggingFace 的 Text Generation Inference 等,各自都有其独特的特点和优势。然而,这些工具往往未能充分发挥 GPU 的性能。

为了解决这些问题,NVIDIA 推出了一种全新的解决方案——TensorRT-LLM。这是一款高度优化的开源计算框架,它将 NVIDIA TensorRT 的深度学习编译器、FasterTransformer 的优化内核、预处理和后处理,以及多 GPU/多节点通信等功能封装在一个简单的开源 Python/C++ API 中,同时与硬件进行了一体化优化,形成了一种产品级的大模型推理解决方案。NVIDIA TensorRT-LLM 具有多项突出的特性,包括支持新的 FP8 数据格式,这使得模型可以在更低的精度下运行,从而减少内存消耗,同时保持模型的准确性。它还支持一种名为“In-flight batching” 的新调度技术,可以更有效地处理动态负载,提高 GPU 利用率。

此外,TensorRT-LLM 还支持模型的并行化和分布式推理,利用张量并行性进行模型并行化,使模型可以在多个 GPU 之间并行运行,从而实现大型模型的高效推理。最重要的是,TensorRT-LLM 极大地简化了开发流程,使得开发者无需深入了解底层的技术细节,也无需编写复杂的 CUDA/C++ 代码。它提供了一个易用、开源和模块化的应用编程接口,使开发者能够轻松定义、优化和执行新的大型语言模型架构和增强功能。总的来说,TensorRT-LLM 让用户可以专注于模型的设计和优化,而将底层的性能优化工作交给 TensorRT 来完成,大大提高了开发效率和生产效率,真正实现了大模型推理的易用性和高效性。

阿里云的通义千问开源模型 Qwen-7B,拥有 70 亿参数,在一系列全方位的评估中展示了其在自然语言理解与生成、数学问题求解、代码生成等领域的优秀能力。这些评估涵盖了多个数据集,包括 MMLU、C-Eval、GSM8K、HumanEval 以及 WMT22 等。在这些评测中,Qwen-7B 不仅超越了同等规模的其他大型语言模型,甚至在某些方面超过了参数规模更大的模型。因此,对于 TensorRT-LLM 来说,支持 Qwen 系列模型具有重要的意义。

开发与优化过程

我们是社区开发者,通过阿里云天池举办的 NVIDIA TensorRT Hackathon 2023 接触到了 NVIDIA TensorRT-LLM,并为它贡献了代码。TensorRT-LLM 已开源(++https://github.com/NVIDIA/TensorRT-LLM++),包含了我们开发的 Qwen-7B 模型。以下是我们的开发记录,供其他开发者参考。

基础功能支持

  1. 首先我们初步分析了 examples/llama 代码,以深化对 trt-llm 基本流程的理解。在 llama 项目的 weight.py 中,存在一个 load_from_meta_llama 函数,该函数包含 tensorrt_llm.models.LLaMAForCausalLM,此部分定义了 TensorRT 的模型结构。复制 examples/llama 并将其重命名为 examples/qwen,同时将 LLaMAForCausalLM 复制并创建新的 mode.py 文件,将相关内容粘贴至此。在这个过程中,所有包含“llama”的模型都被替换为“qwen”。
  2. 接下来,我们对项目中的 weight.py 的 load_from_hf_qwen 函数进行修改,目的是逐步将 HuggingFace 的权重名称与 TensorRT 的权重名称对齐。执行 build.py 后,虽然编译成功,但执行 run.py 的结果并未如预期。
  3. 参照 TensorRT-LLM 的 docs/source/2023-05-19-how-to-debug.md 文档,我们对模型进行了详细的调试,从外到内打印模型层的数值,观察 mean/sum/shape,并与原版进行对比。经过排查,我们发现 attention 部分已经包含了 rope 计算,通过调整 gpt attention plugin 的参数,最终使得输出的 logits 正常。
  4. 再次优化 run.py,将 HuggingFace 原版的 qwen_generation_utils.py 中的 make_context 函数迁移到 utils/utils.py 中,并导入该函数。这个函数被用来构造一个 chat 版的 prompt 输入,同时我们调整 eos 和 pad token 为 qwen 专属的 <|im_end|> 或者 <|endoftext|>,最终 run.py 输出也正常。

增加功能:Weight Only 量化

在 FP16 对齐成功,并且 run.py 以及 summarize.py 文件均能正常运行之后,我们开始探索实现 weight only int8/int4 量化。这只需要在 build.py 文件中对 weight only int8/int4 分支进行轻微调整,包括 shape 的修改,以及保持权重名称与 FP16 一致。接下来,我们进行编译测试,发现这一过程顺利完成,且工作量并未超出预期,这部分工作基本无需投入大量人力资源。

增加功能:Smooth Quant

  1. 在参考 Llama 项目的基础上,我们将 hf_llama_convert.py 替换为 hf_qwen_convert.py 文件,该文件用于将 HuggingFace 的权重导出至 FasterTransformer (FT) 格式的文件。同时,我们将 llama/weight.py 中的 load_from_binary load_from_ft 函数_重命名为 load_from_ft_ 复制到 qwen/weight.py,并根据我们导出的权重文件进行了适当的修改。然后,我们将 qwen/build.py 中默认的加载函数从 load_from_hf_qwen 更改为 load_from_ft。为了保证兼容性,我们也对 load_from_ft 函数进行了 fp16,以及 weight_only的int8/int4 的适配,其适配流程与之前的基本相同。当开发者未导出 FT 权重时,系统会自动加载 load_from_hf_qwen 函数以生成 engine。
  2. 在 smooth quant 的实现方面,我们参考了 example/llama 的 smooth quant 过程,同样在 hf_qwen_convert.py 中添加了 --smoothquant 选项。通过调试 example/llama/hf_llama_convert.py 文件,我们观察了 smooth_gpt_modelsmooth_llama_model 函数的计算方法以及参数的 shape,发现其 mlp 的 gate 和 up 与 qwen mlp 的 w2/w1 layer 相对应,并且 w1/w2 共享一个输入。这部分的适配与之前的基本一致,唯一的区别是,attention 和 mlp 中需要量化的层需要进行转置,然后在 weight.py 的 load_from_ft 函数中再次转置回来。
  3. 我们再次分析了 example/llama 的 smooth quant 过程,并参考了其 build.py 文件,发现其中一个有一个 from tensorrt_llm.models import smooth_quantize 过程。在这个过程中,_smooth_quantize_llama 函数会替换掉 trt-llm 原本的模型结构。因此,我们在 qwen/utils 目录下建立了一个 quantization.py 文件,参考了 llama 的 SmoothQuantAttention,并复用了其 SmoothQuantRmsNorm,从而实现了 qwen 的 smooth quant 的全部过程。

优化效果

精度

  • 测试平台:NVIDIA A10 Tensor Core GPU (24G显存) | TensorRT 9.0.0.1。
  • TRT_LLM engine 编译时最大输入长度:2048, 最大新增长度:2048。
  • HuggingFace 版 Qwen 采用默认配置,未安装,未启用 FlashAttention 相关模块。
  • 测试时: beam=batch=1,max_new_tokens=100。
  • 测试结果(该结果由 examples/qwen/summarize.py 生成。注:量化后分数与原版分数越接近,精度越好):
Platformdtyperouge1rouge2rougeLrougeL sum
HuggingFacebf1628.229.3719.2022.37
TensorRT-LLMfp1628.249.3919.2222.40
TensorRT-LLMint8(weight only)29.3910.3619.9823.41
TensorRT-LLMint4(weight only)29.7511.0320.0023.95
TensorRT-LLMint8(smooth quant)29.8311.1821.4224.66

性能

  • 测试平台:NVIDIA A10 Tensor Core GPU (24G显存) | TensorRT 9.0.0.1。
  • 测试数据集为 ShareGPT_Vicuna_unfiltered,++下载地址++。
  • 生成速度(token/s):此指标不仅包括 generation 的过程,同时也计算了 context 阶段时间,因此它表示的是每秒实际处理(理解输入和生成输出)的 token 数量。
  • 吞吐速度(requests/s):此指标代表在极限情况下,无请求间隙时,系统平均每秒能处理的请求数量。
  • 以下的测试包含多个 batch,主要用于测试特定显卡的极限运行情况,测试过程仅使用 TensorRT-LLM python 运行时环境。
  • HuggingFace 版 Qwen 采用默认配置,未安装,未启用 FlashAttention 相关模块。
  • 当最大输入长度:2048, 最大新增长度:2048,num-prompts=100, beam=1, seed=0 时,BenchMark 结果如下:

在这里插入图片描述

图1:TRT-LLM 与 HuggingFace 吞吐以及生成对比( 吞吐加速比最高 4.25, 生成加速比最高 4.69)

  • 当最大输入长度:1024, 最大新增长度:1024,num-prompts=100, beam=1, seed=0。BenchMark 结果如下:

在这里插入图片描述

图2:TRT-LLM 与 HuggingFace 吞吐以及生成对比( 吞吐加速比最高 4.57, 生成加速比最高 5.56)

总结

从整个开发过程的角度来看,NVIDIA TensorRT-LLM 已经实现了相当丰富的功能。它支持新模型的工作量不大,因为可以复用已有模型的相关代码,只需要进行少量的改动即可完成对新模型的支持。这表明了 TensorRT-LLM 具有很好的扩展性。此外,在精度方面,它能够与 HuggingFace 保持一致,但在速度方面最高可以达到 HuggingFace 的 5.56 倍。综合考虑这些因素,可以说 TensorRT-LLM 完全有资格成为大规模语言模型推理框架的首选。它极大地缓解了推理和部署的难题,为广泛应用大型语言模型提供了有力支持。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值