TensorRT-LLM+ChatGLM/Qwen推理部署

一、背景

LLM模型训练完毕、部署在线上进行使用时,遇到的一大难题是并发问题。

以单个模型为例,当模型进行计算时至少要花6、7秒甚至更多。这导致,如果这时有一个新的请求给到模型,模型需要等上一个请求计算完毕才能进行新的计算。

如果一个基于大模型的线上服务,其峰值并发访问量会达到几千、几万,从成本的角度考虑,也不可能同时部署这么多个模型来支持这样的访问量。

另一方面,从理论上来说,LLM模型都是多层transformer block。当前层block计算完毕后,即使最终结果仍为给出,但当前层已处于闲置状态,如果这时把新的请求给到当前层进行计算,也不会对上一个请求的计算结果产生干扰。因此,从理论角度,模型的推理加速是有可行性的。

基于此理论,Nvidia官方则推出了的模型部署方案TensorRT-LLM

二、部署流程

使用TensorRT-LLM部署大模型需要以下几步:

  1. 安装TensorRT-LLM
  2. 启动容器
  3. 安装python依赖
  4. 转化模型格式
  5. 运行/部署

下面将依次介绍这些流程具体实施方案。

三、安装TensorRT-LLM

结合自己的显卡驱动版本,从官网拉取合适的docker镜像。
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorrt/tags
我的驱动版本为:Driver Version: 530.30.02 CUDA Version: 12.1
我拉取的版本为:24.03-py3

注意:

  1. 早期,官方未提供镜像的时,需要从github拉取源码+cmake本地编译完成安装,这也是其他博客、教程中主要使用的方式。
  2. 但这一方式的缺点是需要预装很多环境,且编译过程非常耗时(几个小时)。
    并且,若服务器本身无法连上境外网站(比如github)时,需要先下载到本地再上传至服务器,过程非常繁琐。
  3. 因此,强烈推荐大家直接拉取镜像即可。另外,若docker版本低于19.02,其pull命令会略有不同,详情请在官网中查看。

四、启动容器

使用以下指令启动容器

docker run \
  --gpus all 
<think>好的,用户让我介绍一下Cherry Studio如何调用本地部署的大模型。首先,我需要确认Cherry Studio是什么,可能是一个本地化的AI开发工具或者平台。用户可能是在寻找如何在自己的环境中部署大模型,比如LLM,并且通过Cherry Studio来调用它们。 接下来,我需要考虑用户可能的背景。他们可能是开发者或者企业用户,想要在本地运行大模型,可能是出于数据隐私、安全性或网络延迟的考虑。因此,用户的需求可能包括如何安装配置Cherry Studio,如何连接本地模型,以及可能遇到的常见问题。 需要分步骤解释:首先介绍Cherry Studio的基本功能,然后说明本地部署大模型的步骤,包括模型下载、环境配置、接口设置等。可能还需要提到支持的模型框架,比如Hugging Face的Transformers,或者Llama.cpp等。另外,要强调安全性和离线使用的优势,以及性能优化的方法,比如GPU加速。 用户可能还会关心API接口的具体调用方式,比如REST API或Python SDK,以及如何进行测试和调试。可能存在的误区是用户以为本地部署复杂,需要简化步骤说明,让用户有信心去尝试。 还要检查是否有遗漏的信息,比如是否需要特定硬件要求,或者操作系统兼容性。可能需要提醒用户注意模型文件的大小和内存需求,避免运行时出现问题。 最后,总结Cherry Studio的优势,比如用户友好的界面、灵活的配置,以及适合企业的解决方案。确保回答结构清晰,步骤详细,同时语言简洁,避免技术术语过多,让不同技术背景的用户都能理解。</think>Cherry Studio 是一个本地化的大模型(如LLM)开发和部署工具,支持在私有化环境中调用和管理大模型。以下是如何通过 **Cherry Studio 调用本地部署大模型**的关键步骤和介绍: --- ### **1. Cherry Studio 的核心功能** - **本地化部署**:模型和数据完全运行在本地服务器,避免数据外泄,适合金融、医疗等敏感领域。 - **多框架支持**:兼容 Hugging Face Transformers、Llama.cpp、vLLM 等主流模型框架。 - **可视化界面**:提供模型管理、API 调试、监控等功能,降低使用门槛。 - **高性能推理**:支持 GPU 加速、模型量化等技术,优化本地资源利用率。 --- ### **2. 调用本地大模型的步骤** #### **步骤 1:部署大模型** - **选择模型**:下载模型文件(如 Llama3、QwenChatGLM 等),通常为 `.bin` 或 `.gguf` 格式。 - **环境配置**:安装依赖(如 Python、PyTorch/CUDA),通过 Hugging Face 或 Ollama 等工具加载模型。 - **启动模型服务**:将模型封装为 API 服务(如 FastAPI),开放本地端口(如 `http://localhost:8000`)。 #### **步骤 2:配置 Cherry Studio** - **连接本地模型**:在 Cherry Studio 中添加模型,填写 API 地址和认证信息(如 API Key)。 - **设置推理参数**:调整温度(temperature)、最大生成长度(max_tokens)等超参数。 - **测试模型**:通过内置的 Playground 输入文本,实时查看生成效果。 #### **步骤 3:集成到应用** - **API 调用**:通过 RESTful API 或 Python SDK 调用本地模型: ```python import requests response = requests.post( "http://localhost:8000/generate", json={"prompt": "你好,介绍一下上海", "max_tokens": 500} ) print(response.json()["result"]) ``` - **业务对接**:将模型集成到企业内部的聊天机器人、数据分析等场景。 --- ### **3. 优势与适用场景** - **数据安全**:无需依赖 OpenAI 等云端服务,满足 GDPR 或网络安全法要求。 - **定制化**:支持微调(Fine-tuning)本地模型,适配垂直领域需求(如法律、客服)。 - **离线可用**:无网络环境下仍可运行,适合内网或隔离环境。 --- ### **4. 常见问题** - **硬件要求**:大模型需要较高显存(如 7B 模型需 10GB+ GPU),可选用量化版本降低资源消耗。 - **性能优化**:使用 vLLM 加速推理,或通过 TensorRT 编译模型提升吞吐量。 - **错误排查**:检查端口冲突、依赖版本兼容性,查看 Cherry Studio 的日志输出。 -- 通过 Cherry Studio,企业可以高效管理本地大模型,平衡生成式 AI 的能力与数据隐私需求。如果需要具体模型的部署示例(如 Llama3 或通义千问),可以进一步提供细节!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Anycall201

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值