想要转行ai赛道?看完这篇少走三年弯路(附大模型教程)

最近有朋友说,想转行ai赛道,做大模型之类的工作,不知道有哪些岗位。今天就来聊聊,AI大模型有哪些方向,新人怎么转行大模型赛道,让大家少走弯路,早日在AI领域如鱼得水!

图片

其实,在招聘网站上搜搜 “大模型”,看看那些招聘要求,就能大概了解大模型工程师都有哪些方向了。主要分为下面这四类:

  • 数据治理方向:大模型数据工程师,主要负责爬虫、数据清洗、ETL、Data Engine、Pipeline 这些工作。简单说,就是要把数据整理得妥妥当当,让模型能 “吃” 得好。

  • 平台搭建方向:大模型平台工程师,负责分布式训练、大模型集群以及工程基建等。他们就像是大模型的 “建筑工人”,打造出能让模型高效运行的平台。

  • 模型算法方向:大模型算法工程师,主要涉及搜、广、推、对话机器人、AIGC 这些领域。听起来是不是超酷,一听能做出很厉害的产品!

  • 部署落地方向:大模型部署工程师,负责推理加速、跨平台、端智能、嵌入式这些工作。他们要确保模型能顺利在各种设备上运行起来。

下面分别对这四个方向的工作内容进行展开。

1、数据治理 —— 被轻视的宝藏领域

很多人可能觉得自己学了好多算法知识,再去做数据工作有点大材小用了。其实不然!对于很多转行大模型的同学来说,做数据可是更容易上岸的途径呢!

现在国外的大模型技术比国内领先不少,虽然国内有很多 “大模型”,但真正厉害的没几个。为啥呢?除了一些技术没突破,数据和工程技巧也很关键。

就拿数据来说,通用大模型训练的数据来源、采集、质量把控、有毒信息过滤、语言筛选与比例、去重和规范化处理,还有评测集构建,这些都是技术活,也是体力活。

在垂直领域,像金融、电商、法律、车企这些,数据构建更难了。业务数据从哪来?数据不够怎么办?怎么构建高质量微调数据?要是能把这些问题解决好,模型就成功一大半啦!所以现在有经验又有能力的数据工程师是比较稀缺的。

2、平台搭建——保障高性能计算

要是你以前是做工程的,或者对工程感兴趣,那大模型平台工程师这个方向很适合你。

这个方向其实就是为大模型业务服务的,打造大模型的基础设施,让模型训练得更好、跑得更快,有分布式计算、并行计算,总之就是保障高性能计算。

具体都做些啥呢?

  • 硬件层面,要搞大模型训练集群,像 GPU 集群、CPU/GPU 混部集群,得管理好几百上千张卡,还要关注它们的利用率和健康状况。中小公司通常开发和运维都得干。

  • 平台层面,要做 LLMOps,也就是 pipeline,把数据 IO、模型训练、预测、上线、监控都整合起来,跟着业务团队走,造些好用的工具,给业务团队省时间。

3、模型算法——传说中的算法工程师

好多小伙伴一看到大模型算法岗,可能立马就被吸引了,觉得能做出超厉害的产品,站在行业前沿。

但是,在 AI 这行,模型算法应用是很需要业务经验的。如果你本来就是做算法相关的,比如 NLP、语音助手或者对话机器人,那继续做这个方向的大模型算法工程师是合适的。

但如果你是 CS 方向的实习生、应届毕业生,或者其他 IT 行业转过来的,这不一定是最好的选择。

别以为大模型算法工程师就是调调模型、改改超参、做做预训练和 finetune 这些简单活儿。实际上,一个团队里干这些核心算法优化的没几个人,大部分新人进去都是先干些配环境、搭链路、清洗和分析数据、调研、写函数工具这些基础工作。

等这些干熟练了,才有可能跑些模型实验,表现好的同学才有机会接触线上业务。有些同学干了好几年,还在做些边角料的活儿,根本接触不到核心业务呢!

所以刚入行的小伙伴,如果学历背景好,可以去大公司实习争取转正;背景一般的话,去中小公司积累业务经验也是不错的。

4、部署落地——实现AI价值最后一公里

大模型部署主要有两个方向:云端部署和端侧部署

  • 云端部署,可以做推理加速平台,给特定模型做定制化加速,像 Qwen - 7b 的加速,也可以做大模型推理引擎,在高并发用户场景下,保证用户体验的同时优化延迟和吞吐量。

  • 端侧部署,就是要在消费级 GPU/NPU 和边端设备上把模型部署好,还要让领域大模型小型化,实现工程落地。

这个岗位对工程、系统和硬件方面的能力都有要求,虽然现在有各种推理框架降低了点难度,但还是挺有挑战性的,不太建议新人直接做,可以先从平台方向入手,再慢慢转到部署方向。

最后,给新人的一些小建议

  • 别光盯着 finetune、SFT、RLHF 这些,虽然系统学习是必要的,但不需要花太多精力哦。

  • 想做应用方向的小伙伴,建议聚焦在某个垂直领域,比如对话机器人、问答系统,或者金融、医疗、教育这些方向,选一个具体场景好好做,做深做透。

  • 一定要多关注数据,像 data pipeline,高质量训练 / 测试集的构建经验,还有对数据的敏感度,这些在未来工作中非常有用。

  • 记住,大模型不只有算法,工程也很重要。大公司都在拼基建,好的平台对业务支撑作用可大了,是大模型产品成功的关键因素!

好啦,小伙伴们,希望这些能对你们入行大模型有所帮助,祝大家都能在这个领域发光发热!

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值