中国学者周海中根据已知的梅森素数及其排列,巧妙地运用联系观察法和不完全归纳法,于1992年2月正式提出了一个关于梅森素数分布的猜想,并首次给出其分布的精确表达式。 后来这一重要猜想被国际数学界命名为 “周氏猜测” 。
周氏猜测的基本内容为:当 2 2 n < p < 2 2 n + 1 2^{2^{n}}<p<2^{2^{n+1}} 22n<p<22n+1 时, M p M_{p} Mp 有 2 n + 1 − 1 2^{n+1}-1 2n+1−1 个是素数; 即 p < 2 2 n + 1 p<2^{2^{n+1}} p<22n+1 时梅森素数的个数为 2 n + 2 − n − 2 2^{n+2}-n-2 2n+2−n−2 .
周氏猜测自提出以来一直受到人们关注,而且在一些国内外出版的数学辞典和教科书中都有介绍。美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
周氏猜测的表达式虽然简单,但破解这一猜测的难度却很大。就目前研究文献来看,一些数学家和数学爱好者尝试破解周氏猜测,却至今未能证明或反证。
即:当 2 2 n − 1 < p < 2 2 n 2^{2^{n-1}}<p<2^{2^{n}} 22n−1<p<22n 时, M p M_{p} Mp 有 2 n − 1 2^{n}-1 2n−1 个是素数;
π M p ( 2 2 n ) − π M p ( 2 2 n − 1 ) = 2 n − 1...... ( a ) \pi_{M_{p}}(2^{2^{n}})-\pi_{M_{p}}(2^{2^{n-1}})=2^{n}-1......(a) πMp(22n)−πMp(22n−1)=2n−1......(a)
即:当 p < 2 2 n p<2^{2^{n}} p<22n 时, π M p ( 2 2 n ) \pi_{M_{p}}(2^{2^{n}}) πMp(22n) 梅森素数的个数为 2 n + 1 − n − 1 2^{n+1}-n-1 2n+1−n−1 ;
π M p ( 2 2 n ) = 2 n + 1 − n − 1 \pi_{M_{p}}(2^{2^{n}})=2^{n+1}-n-1 πMp(22n)=2n+1−n−1
先看一道题:
已知数列 { a n } 中 , a 1 = 1 , a n + 1 = 2 a n + 1 , \left\{ a_{n} \right\} 中, a_{1}=1,a_{n+1}=2a_{n}+1 , {
an}中,a1=1,an+1=2an+1,求数列的通项公式及前 n n n 项和 S n S_{n} Sn
解: a n + 1 + 1 = 2 ( a n + 1 ) a_{n+1}+1=2(a_{n}+1) an+1+1=2(an+1) ,数列 { a n + 1 } \left\{ a_{n}+1 \right\} {
an+1} 为等比数数列,公比 q = 2 , q=2, q=2, 所以 a n + 1 = 2 n − 1 ( a 1 + 1 ) , a_{n}+1=2^{n-1}(a_{1}+1), an+1=2n−1(a1+1), 即 a n = 2 n − 1 , a n + 1 = 2 n + 1 − 1 , a_{n}=2^{n}-1,a_{n+1}=2^{n+1}-1, an=2n−1,an+1=2n+1−1, 且 S n = 2 n + 1 − n − 2 S_{n}=2^{n+1}-n-2 Sn=2n+1−n−2
即 f ( n ) = 2 n − 1 f(n)=2^{n}-1 f(n)=2n−