§ 2 § 2 §2 柯西中值定理和不定式极限
一、柯西中值定理
现给出一个形式更一般的微分中值定理.
定理 6.6(柯西中值定理) 设函数 f f f 和 g g g 满足:
(i) 在 [ a , b ] [a, b] [a,b] 上都连续;
(ii) 在 ( a , b ) (a, b) (a,b) 上都可导;
(iii) f ′ ( x ) f^{\prime}(x) f′(x) 和 g ′ ( x ) g^{\prime}(x) g′(x) 不同时为零;
(iv) g ( a ) ≠ g ( b ) g(a) \neq g(b) g(a)=g(b),
则存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b), 使得
f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) . \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} . g′(ξ)f′(ξ)=g(b)−g(a)f(b)−f(a).
证 作辅助函数
F ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) g ( b ) − g ( a ) ( g ( x ) − g ( a ) ) . F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a)) . F(x)=f(x)−f(a)−g(b)−g(a)f(b)−f(a)(g(x)−g(a)).
易见 F F F 在 [ a , b ] [a, b] [a,b] 上满足罗尔定理条件,故存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b),使得
F ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = 0. F^{\prime}(\xi)=f^{\prime}(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(\xi)=0 . F′(ξ)=f′(ξ)−g(b)−g(a)f(b)−f(a)g′(ξ)=0.
因为 g ′ ( ξ ) ≠ 0 g^{\prime}(\xi) \neq 0 g′(ξ)=0 (否则由上式 f ′ ( ξ ) f^{\prime}(\xi) f′(ξ) 也为零),
所以可把上式改写成 (1) 式.
柯西中值定理有与前两个中值定理相类似的几何意义. 只是现在要把 f , g f, g f,g
这两个函数写作以 x x x 为参量的参量方程
{ u = g ( x ) , v = f ( x ) , \left\{\begin{array}{l} u=g(x), \\ v=f(x), \end{array}\right. {
u=g(x),v=f(x),
它在 u O v u O v uOv 平面上表示一段曲线 (图6-5).由于(1)式右边的
f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f(b)-f(a)}{g(b)-g(a)} g(b)−g(a)f(b)−f(a) 表示连接该曲线两端的弦 A B A B AB 的斜率,而 (1)
式左边的
f ′ ( ξ ) g ′ ( ξ ) = d v d u ∣ x = ξ \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\left.\frac{\mathrm{d} v}{\mathrm{~d} u}\right|_{x=\xi} g′(ξ)f′(ξ)= dudv
x=ξ
则表示该曲线上与 x = ξ x=\xi x=ξ 相对应的一点 C ( g ( ξ ) C(g(\xi) C(g(ξ), f ( ξ ) ) f(\xi)) f(ξ))
处的切线的斜率. 因此 (1)
式即表示上述切{width=“252px”}
图 6-5 线与弦 A B A B AB 互相平行.
例 1 设函数 f f f 在 [ a , b ] ( a > 0 ) [a, b](a>0) [a,b](a>0) 上连续,在 ( a , b ) (a, b) (a,b) 上可导,则存在
ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b), 使得
f ( b ) − f ( a ) = ξ f ′ ( ξ ) ln b a . f(b)-f(a)=\xi f^{\prime}(\xi) \ln \frac{b}{a} . f(b)−f(a)=ξf′(ξ)lnab.
证 设 g ( x ) = ln x g(x)=\ln x g(x)=lnx, 显然它在 [ a , b ] [a, b] [a,b] 上与 f ( x ) f(x) f(x)
一起满足柯西中值定理条件, 于是存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ∈(a,b), 使得
f ( b ) − f ( a ) ln b − ln a = f ′ ( ξ ) 1 ξ . \frac{f(b)-f(a)}{\ln b-\ln a}=\frac{f^{\prime}(\xi)}{\frac{1}{\xi}} . lnb−lnaf(b)−f(a)=ξ1f′(ξ).
上式整理后便得到所要证明的(2)式.
例 2 设 f f f 在区间 ( 0 , 1 ] (0,1] (0,1] 上可导,
lim x → 0 + x f ′ ( x ) = A \lim \limits_{x \rightarrow 0^{+}} \sqrt{x} f^{\prime}(x)=A x→0+limxf′(x)=A. 证明: f f f
在区间 ( 0 , 1 ] (0,1] (0,1] 上一致连续.
证 设 M = ∣ A ∣ + 1 M=|A|+1 M=∣A∣+1. 因为
lim x → 0 + x f ′ ( x ) = A \lim \limits_{x \rightarrow 0^{+}} \sqrt{x} f^{\prime}(x)=A x→0+limxf′(x)=A, 所以存在
δ 1 ( 0 < δ 1 < 1 ) \delta_{1}\left(0<\delta_{1}<1\right) δ1(0<δ1<1), 当 0 < x < δ 1 0<x<\delta_{1} 0<x<δ1 时,
∣ x f ′ ( x ) ∣ < M \left|\sqrt{x} f^{\prime}(x)\right|<M ∣xf′(x)∣<M. 那么对任意的
x , y ∈ ( 0 , δ 1 ] , x < y x, y \in\left(0, \delta_{1}\right], x<y x,y∈(0,δ1],x<y, 由柯西中值定理, 存在 ξ \xi ξ,
使
∣ f ( x ) − f ( y ) x − y ∣ = 2 ∣ ξ f ′ ( ξ ) ∣ ⩽ 2 M , 0 < x < ξ < y ⩽ δ 1 . \left|\frac{f(x)-f(y)}{\sqrt{x}-\sqrt{y}}\right|=2\left|\sqrt{\xi} f^{\prime}(\xi)\right| \leqslant 2 M, \quad 0<x<\xi<y \leqslant \delta_{1} .
x−yf(x)−f(y)
=2
ξf′(ξ)
⩽2M,0<x<ξ<y⩽δ1.
由此
∣ f ( x ) − f ( y ) ∣ ⩽ 2 M ∣ x − y ∣ . |f(x)-f(y)| \leqslant 2 M|\sqrt{x}-\sqrt{y}| . ∣f(x)−f(y)∣⩽2M∣x−y∣.
因为函数 x \sqrt{x} x 在区间 ( 0 , δ 1 ] \left(0, \delta_{1}\right] (0,δ1] 上一致连续, 所以
f ( x ) f(x) f(x) 亦在 ( 0 , δ 1 ] \left(0, \delta_{1}\right] (0,δ1] 上一致连续. 又 f ( x ) f(x) f(x) 在
[ δ 1 , 1 ] \left[\delta_{1}, 1\right] [δ1,1] 上连续, 从而为一致连续,故函数 f f f 在区间
( 0 , 1 ] (0,1] (0,1] 上一致连续.
二、不定式极限
我们在第三章学习无穷小 (大) 量阶的比较时, 已经遇到过两个无穷小(大)
量之比的极限. 由于这种极限可能存在, 也可能不存在,
因此我们把两个无穷小量或两个无穷大量之比的极限统称为不定式极限, 分别记为
0 0 \frac{0}{0} 00 型或 ∞ ∞ \frac{\infty}{\infty} ∞∞ 型的不定式极限.
现在我们将以导数为工具研究不定式极限, 这个方法通常称为洛必达 (
L ′ L^{\prime} L′ Hospital) 法则. 柯西 中值定理则是建立洛必达法则的理论依据.
1. 0 0 \frac{0}{0} 00 型不定式极限
定理 6.7 若函数 f f f 和 g g g 满足:
(i)
lim x → x 0 f ( x ) = lim x → x 0 g ( x ) = 0 \lim \limits_{x \rightarrow x_{0}} f(x)=\lim \limits_{x \rightarrow x_{0}} g(x)=0 x→x0limf(x)=x→x0limg(x)=0;
(ii) 在点 x 0 x_{0} x0 的某空心邻域 U ∘ ( x 0 ) U^{\circ}\left(x_{0}\right) U∘(x0)
上两者都可导,且 g ′ ( x ) ≠ 0 g^{\prime}(x) \neq 0 g′(x)=0;
(iii)
lim x → x 0 f ′ ( x ) g ′ ( x ) = A ( A \lim \limits_{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A(A x→x0limg′(x)f′(x)=A(A
可为实数, 也可为 ± ∞ \pm \infty ±∞ 或 ∞ \infty ∞ ),
则
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) = A . \lim \limits_{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim \limits_{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A . x→x0limg(x)f(x)=x→x0limg′(x)f′(x)=A.
证 补充定义 f ( x 0 ) = g ( x 0 ) = 0 f\left(x_{0}\right)=\boldsymbol{g}\left(x_{0}\right)=0 f(x0)=g(x0)=0,
使得 f f f 与 g \boldsymbol{g} g 在点 x 0 x_{0} x0 连续.任取
x ∈ U ∘ ( x 0 ) x \in U^{\circ}\left(x_{0}\right) x∈U∘(x0), 在区间 [ x 0 , x ] \left[x_{0}, x\right] [x0,x] (或
[ x , x 0 ] ) \left.\left[x, x_{0}\right]\right) [x,x0]) 上应用柯西中值定理,有
f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ′ ( ξ ) g ′ ( ξ ) , \frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}, g(x)−g(x0)f(x)−f(x0)=g′(ξ)f′(ξ),
即
f ( x ) g ( x ) = f ′ ( ξ ) g ′ ( ξ ) ( ξ 介于 x 0 与 x 之间). \frac{f(x)}{g(x)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \text { ( } \xi \text { 介于 } x_{0} \text { 与 } x \text { 之间). } g(x)f(x)=g′(ξ)f′(ξ) ( ξ 介于 x0 与 x 之间).
当令 x → x 0 x \rightarrow x_{0} x→x0 时, 也有 ξ → x 0 \xi \rightarrow x_{0} ξ→x0, 故得
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( ξ ) g ′ ( ξ ) = lim x → x 0 f