数学分析(九)-定积分02:牛顿一莱布尼茨公式

§ 2 牛顿一莱布尼茨公式
从上节例题和习题看到,
通过求积分和的极限来计算定积分一般是很困难的.下面要介绍的牛顿一莱布尼茨公式不仅为定积分计算提供了一个有效的方法,
而且在理论上把定积分与不定积分联系了起来.
定理 9.1 若函数 f f f [ a , b ] [a, b] [a,b] 上连续, 且存在原函数 F F F, 即
F ′ ( x ) = f ( x ) , x ∈ [ a , b ] F^{\prime}(x)=f(x), x \in[a, b] F(x)=f(x),x[a,b],则 f f f [ a , b ] [a, b] [a,b] 上可积,且
∫ a b f ( x ) d x = F ( b ) − F ( a ) . \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) . abf(x)dx=F(b)F(a).
上式称为牛顿一莱布尼茨公式,它也常写成
∫ a b f ( x ) d x = F ( x ) ∣ a b . \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . abf(x)dx=F(x)ab.
证 由定积分定义, 任给 ε > 0 \varepsilon>0 ε>0, 要证存在 δ > 0 \delta>0 δ>0, 当
∥ T ∥ < δ \|T\|<\delta T<δ 时, 有
∣ ∑ i = 1 n f ( ξ i ) Δ x i − [ F ( b ) − F ( a ) ] ∣ < ε \left|\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}-[F(b)-F(a)]\right|<\varepsilon i=1nf(ξi)Δxi[F(b)F(a)]<ε.
下面证明满足如此要求的 δ \delta δ 确实是存在的.
事实上, 对于 [ a , b ] [a, b] [a,b] 的任一分割
T = { a = x 0 , x 1 , ⋯   , x n = b } T=\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\} T={a=x0,x1,,xn=b}, 在每个小区间
[ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi]上对 F ( x ) F(x) F(x) 使用拉格朗日中值定理,
则分别存在 η i ∈ ( x i − 1 , x i ) , i = 1 , 2 , ⋯   , n \eta_{i} \in\left(x_{i-1}, x_{i}\right), i=1,2, \cdots, n ηi(xi1,xi),i=1,2,,n,
使得
F ( b ) − F ( a ) = ∑ i = 1 n [ F ( x i ) − F ( x i − 1 ) ] = ∑ i = 1 n F ′ ( η i ) Δ x i = ∑ i = 1 n f ( η i ) Δ x i . \begin{aligned} F(b)-F(a) & =\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] \\ & =\sum_{i=1}^{n} F^{\prime}\left(\eta_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} f\left(\eta_{i}\right) \Delta x_{i} . \end{aligned} F(b)F(a)=i=1n[F(xi)F(xi1)]=i=1nF(ηi)Δxi=i=1nf(ηi)Δxi.
因为 f f f [ a , b ] [a, b] [a,b] 上连续, 从而一致连续, 所以对上述 ε > 0 \varepsilon>0 ε>0,
存在 δ > 0 \delta>0 δ>0, 当 x ′ x^{\prime} x, x ′ ′ ∈ [ a , b ] x^{\prime \prime} \in[a, b] x′′[a,b]
∣ x ′ − x ′ ′ ∣ < δ \left|x^{\prime}-x^{\prime \prime}\right|<\delta xx′′<δ 时, 有
∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε b − a . \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\frac{\varepsilon}{b-a} . f(x)f(x′′)<baε.
于是, 当 Δ x i ⩽ ∥ T ∥ < δ \Delta x_{i} \leqslant\|T\|<\delta ΔxiT<δ 时,任取
ξ i ∈ [ x i − 1 , x i ] \xi_{i} \in\left[x_{i-1}, x_{i}\right] ξi[xi1,xi], 便有
∣ ξ i − η i ∣ < δ \left|\xi_{i}-\eta_{i}\right|<\delta ξiηi<δ, 这就证得
∣ ∑ i = 1 n f ( ξ i ) Δ x i − [ F ( b ) − F ( a ) ] ∣ = ∣ ∑ i = 1 n [ f ( ξ i ) − f ( η i ) ] Δ x i ∣ ⩽ ∑ i = 1 n ∣ f ( ξ i ) − f ( η i ) ∣ Δ x i < ε b − a ⋅ ∑ i = 1 n Δ x i = ε . \begin{aligned} & \left|\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}-[F(b)-F(a)]\right| \\ = & \left|\sum_{i=1}^{n}\left[f\left(\xi_{i}\right)-f\left(\eta_{i}\right)\right] \Delta x_{i}\right| \\ \leqslant & \sum_{i=1}^{n}\left|f\left(\xi_{i}\right)-f\left(\eta_{i}\right)\right| \Delta x_{i} \\ < & \frac{\varepsilon}{b-a} \cdot \sum_{i=1}^{n} \Delta x_{i}=\varepsilon . \end{aligned} =< i=1nf(ξi)Δxi[F(b)F(a)] i=1n[f(ξi)f(ηi)]Δxi i=1nf(ξi)f(ηi)Δxibaεi=1nΔxi=ε.
所以 f f f [ a , b ] [a, b] [a,b] 上可积,且有公式 (1) 成立.
注 1 在应用牛顿一莱布尼茨公式时, F ( x ) F(x) F(x) 可由积分法求得.
注 2 定理条件尚可适当减弱,例如:

  1. F F F 的要求可减弱为: 在 [ a , b ] [a, b] [a,b] 上连续, 在 ( a , b ) (a, b) (a,b) 上可导, 且
    F ′ ( x ) = F^{\prime}(x)= F(x)= f ( x ) , x ∈ ( a , b ) f(x), x \in(a, b) f(x),x(a,b). 这不影响定理的证明.
  2. f f f 的要求可减弱为: 在 [ a , b ] [a, b] [a,b] 上可积 (不一定连续). 这时 (2)
    式仍成立, 且由 f f f [ a , b ] [a, b] [a,b] 上可积, (2) 式右边当 ∥ T ∥ → 0 \|T\| \rightarrow 0 T0
    时的极限就是 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx, 而左边恒为一常数.
    (更一般的情形参见本节习题第 3 题.)
    注 3 至 85 证得连续函数必有原函数之后, 本定理的条件中对 F F F
    的假设便是多余的了.
    例 1 利用牛顿一莱布尼茨公式计算下列定积分:
    (1) ∫ a b x n   d x \int_{a}^{b} x^{n} \mathrm{~d} x abxn dx ( n n n 为正整数);
    (2) ∫ a b e x   d x \int_{a}^{b} \mathrm{e}^{x} \mathrm{~d} x abex dx;
    (3) ∫ a b d x x 2 ( 0 < a < b ) \int_{a}^{b} \frac{\mathrm{d} x}{x^{2}}(0<a<b) abx2dx(0<a<b);
    (4) ∫ 0 π sin ⁡ x   d x \int_{0}^{\pi} \sin x \mathrm{~d} x 0πsinx dx;
    (5) ∫ 0 2 x 4 − x 2   d x \int_{0}^{2} x \sqrt{4-x^{2}} \mathrm{~d} x 02x4x2  dx.
    解 其中 (1)-(3) 即为 § 1 § 1 §1 中的例题和习题,
    现在用牛顿一莱布尼茨公式来计算就十分方便:
    (1)
    ∫ a b x n   d x = x n + 1 n + 1 ∣ a b = 1 n + 1 ( b n + 1 − a n + 1 ) \int_{a}^{b} x^{n} \mathrm{~d} x=\left.\frac{x^{n+1}}{n+1}\right|_{a} ^{b}=\frac{1}{n+1}\left(b^{n+1}-a^{n+1}\right) abxn dx=n+1xn+1 ab=n+11(bn+1an+1);
    (2)
    ∫ a b e x   d x = e x ∣ a b = e b − e a \int_{a}^{b} \mathrm{e}^{x} \mathrm{~d} x=\left.\mathrm{e}^{x}\right|_{a} ^{b}=\mathrm{e}^{b}-\mathrm{e}^{a} abex dx=exab=ebea;
    (3)
    ∫ a b d x x 2 = − 1 x ∣ a b = 1 a − 1 b \int_{a}^{b} \frac{\mathrm{d} x}{x^{2}}=-\left.\frac{1}{x}\right|_{a} ^{b}=\frac{1}{a}-\frac{1}{b} abx2dx=x1 ab=a1b1;
    (4)
    ∫ 0 π sin ⁡ x   d x = − cos ⁡ x ∣ 0 π = 2 \int_{0}^{\pi} \sin x \mathrm{~d} x=-\left.\cos x\right|_{0} ^{\pi}=2 0πsinx dx=cosx0π=2.
    (这里的 (4) 是图 9-6 所示正弦曲线一拱下的面积,其余各题也可作此联想.)
    (5) 先用不定积分法求出 f ( x ) = x 4 − x 2 f(x)=x \sqrt{4-x^{2}} f(x)=x4x2
    的任一原函数,然后完成定积分计算:
    ∫ x 4 − x 2   d x = − 1 2 ∫ 4 − x 2   d ( 4 − x 2 ) = − 1 3 ( 4 − x 2 ) 3 + C , ∫ 0 2 x 4 − x 2   d x = − 1 3 ( 4 − x 2 ) 3 ∣ 0 2 = 8 3 . \begin{aligned} \int x \sqrt{4-x^{2}} \mathrm{~d} x= & -\frac{1}{2} \int \sqrt{4-x^{2}} \mathrm{~d}\left(4-x^{2}\right) \\ = & -\frac{1}{3} \sqrt{\left(4-x^{2}\right)^{3}}+C, \\ & \int_{0}^{2} x \sqrt{4-x^{2}} \mathrm{~d} x=-\left.\frac{1}{3} \sqrt{\left(4-x^{2}\right)^{3}}\right|_{0} ^{2}=\frac{8}{3} . \end{aligned} x4x2  dx==214x2  d(4x2)31(4x2)3 +C,02x4x2  dx=31(4x2)3 02=38.
    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“216px”}
    图 9-6
    例 2 利用定积分求极限
    lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 2 n ) = J . \lim \limits_{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)=J . nlim(n+11+n+21++2n1)=J.
    解 把此极限式化为某个积分和的极限式, 并转化为计算定积分. 为此作如下变形:
    J = lim ⁡ n → ∞ ∑ i = 1 n 1 1 + i n ⋅ 1 n . J=\lim \limits_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+\frac{i}{n}} \cdot \frac{1}{n} . J=nlimi=1n1+ni1n1.
    不难看出, 其中的和式是函数 f ( x ) = 1 1 + x f(x)=\frac{1}{1+x} f(x)=1+x1 在区间 [ 0 , 1 ] [0,1] [0,1]
    上的一个积分和 (这里所取的是等分分割,
    Δ x i = 1 n , ξ i = i n ∈ [ i − 1 n , i n ] , i = 1 , 2 , ⋯   , n ) \left.\Delta x_{i}=\frac{1}{n}, \xi_{i}=\frac{i}{n} \in\left[\frac{i-1}{n}, \frac{i}{n}\right], i=1,2, \cdots, n\right) Δxi=n1,ξi=ni[ni1,ni],i=1,2,,n).
    所以
    J = ∫ 0 1 d x 1 + x = ln ⁡ ( 1 + x ) ∣ 0 1 = ln ⁡ 2. J=\int_{0}^{1} \frac{\mathrm{d} x}{1+x}=\left.\ln (1+x)\right|_{0} ^{1}=\ln 2 . J=011+xdx=ln(1+x)01=ln2.
    当然,也可把 J J J 看作 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1 [ 1 , 2 ] [1,2] [1,2] 上的定积分, 同样有
    J = ∫ 1 2 d x x = ∫ 2 3 d x x − 1 = ⋯ = ln ⁡ 2. J=\int_{1}^{2} \frac{\mathrm{d} x}{x}=\int_{2}^{3} \frac{\mathrm{d} x}{x-1}=\cdots=\ln 2 . J=12xdx=23x1dx==ln2.
    题 9.2
    1. 计算下列定积分:
    (1) ∫ 0 1 ( 2 x + 3 ) d x \int_{0}^{1}(2 x+3) \mathrm{d} x 01(2x+3)dx;
    (2) ∫ 0 1 1 − x 2 1 + x 2   d x \int_{0}^{1} \frac{1-x^{2}}{1+x^{2}} \mathrm{~d} x 011+x21x2 dx;
    (3) ∫ e r 2 d x x ln ⁡ x \int_{e}^{r^{2}} \frac{\mathrm{d} x}{x \ln x} er2xlnxdx;
    (4)
    ∫ 0 1 e x − e − x 2   d x \int_{0}^{1} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2} \mathrm{~d} x 012exex dx
    (5) ∫ 0 π 3 tan ⁡ 2 x   d x \int_{0}^{\frac{\pi}{3}} \tan ^{2} x \mathrm{~d} x 03πtan2x dx;
    (6)
    ∫ 4 9 ( x + 1 x ) d x \int_{4}^{9}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) \mathrm{d} x 49(x +x 1)dx;
    (7) ∫ 0 4 d x 1 + x \int_{0}^{4} \frac{\mathrm{d} x}{1+\sqrt{x}} 041+x dx;
    (8) ∫ 1 x 1 x ( ln ⁡ x ) 2   d x \int_{\frac{1}{x}} \frac{1}{x}(\ln x)^{2} \mathrm{~d} x x1x1(lnx)2 dx
    2. 利用定积分求极限:
    (1)
    lim ⁡ n → ∞ 1 n 4 ( 1 + 2 3 + ⋯ + n 3 ) \lim \limits_{n \rightarrow \infty} \frac{1}{n^{4}}\left(1+2^{3}+\cdots+n^{3}\right) nlimn41(1+23++n3)
    :
    (2)
    lim ⁡ n → ∞ n [ 1 ( n + 1 ) 2 + 1 ( n + 2 ) 2 + ⋯ + 1 ( n + n ) 2 ] \lim \limits_{n \rightarrow \infty} n\left[\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\cdots+\frac{1}{(n+n)^{2}}\right] nlimn[(n+1)21+(n+2)21++(n+n)21];
    (3)
    lim ⁡ n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 2 + ⋯ + 1 2 n 2 ) \lim \limits_{n \rightarrow \infty} n\left(\frac{1}{n^{2}+1}+\frac{1}{n^{2}+2^{2}}+\cdots+\frac{1}{2 n^{2}}\right) nlimn(n2+11+n2+221++2n21)
    (4)
    lim ⁡ n → ∞ 1 n ( sin ⁡ π n + sin ⁡ 2 π n + ⋯ + sin ⁡ n − 1 n π ) \lim \limits_{n \rightarrow \infty} \frac{1}{n}\left(\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\cdots+\sin \frac{n-1}{n} \pi\right) nlimn1(sinnπ+sinn2π++sinnn1π).
    3. 证明: 若 f f f [ a , b ] [a, b] [a,b] 上可积, F F F [ a , b ] [a, b] [a,b] 上连续,
    且除有限个点外有 F ′ ( x ) = f ( x ) F^{\prime}(x)=f(x) F(x)=f(x), 则有
    ∫ 0 b f ( x ) d x = F ( b ) − F ( a ) . \int_{0}^{b} f(x) \mathrm{d} x=F(b)-F(a) . 0bf(x)dx=F(b)F(a).
  • 19
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值