§ 2 牛顿一莱布尼茨公式
从上节例题和习题看到,
通过求积分和的极限来计算定积分一般是很困难的.下面要介绍的牛顿一莱布尼茨公式不仅为定积分计算提供了一个有效的方法,
而且在理论上把定积分与不定积分联系了起来.
定理 9.1 若函数 f f f 在 [ a , b ] [a, b] [a,b] 上连续, 且存在原函数 F F F, 即
F ′ ( x ) = f ( x ) , x ∈ [ a , b ] F^{\prime}(x)=f(x), x \in[a, b] F′(x)=f(x),x∈[a,b],则 f f f 在 [ a , b ] [a, b] [a,b] 上可积,且
∫ a b f ( x ) d x = F ( b ) − F ( a ) . \int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) . ∫abf(x)dx=F(b)−F(a).
上式称为牛顿一莱布尼茨公式,它也常写成
∫ a b f ( x ) d x = F ( x ) ∣ a b . \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . ∫abf(x)dx=F(x)∣ab.
证 由定积分定义, 任给 ε > 0 \varepsilon>0 ε>0, 要证存在 δ > 0 \delta>0 δ>0, 当
∥ T ∥ < δ \|T\|<\delta ∥T∥<δ 时, 有
∣ ∑ i = 1 n f ( ξ i ) Δ x i − [ F ( b ) − F ( a ) ] ∣ < ε \left|\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}-[F(b)-F(a)]\right|<\varepsilon ∣∑i=1nf(ξi)Δxi−[F(b)−F(a)]∣<ε.
下面证明满足如此要求的 δ \delta δ 确实是存在的.
事实上, 对于 [ a , b ] [a, b] [a,b] 的任一分割
T = { a = x 0 , x 1 , ⋯ , x n = b } T=\left\{a=x_{0}, x_{1}, \cdots, x_{n}=b\right\} T={
a=x0,x1,⋯,xn=b}, 在每个小区间
[ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi−1,xi]上对 F ( x ) F(x) F(x) 使用拉格朗日中值定理,
则分别存在 η i ∈ ( x i − 1 , x i ) , i = 1 , 2 , ⋯ , n \eta_{i} \in\left(x_{i-1}, x_{i}\right), i=1,2, \cdots, n ηi∈(xi−1,xi),i=1,2,⋯,n,
使得
F ( b ) − F ( a ) = ∑ i = 1 n [ F ( x i ) − F ( x i − 1 ) ] = ∑ i = 1 n F ′ ( η i ) Δ x i = ∑ i = 1 n f ( η i ) Δ x i . \begin{aligned} F(b)-F(a) & =\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] \\ & =\sum_{i=1}^{n} F^{\prime}\left(\eta_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} f\left(\eta_{i}\right) \Delta x_{i} . \end{aligned} F(b)−F(a)=i=1∑n[F(xi)−F(xi−1)]=i=1∑nF′(ηi)Δxi=i=1∑nf(ηi)Δxi.
因为 f f f 在 [ a , b ] [a, b] [a,b] 上连续, 从而一致连续, 所以对上述 ε > 0 \varepsilon>0 ε>0,
存在 δ > 0 \delta>0 δ>0, 当 x ′ x^{\prime} x′, x ′ ′ ∈ [ a , b ] x^{\prime \prime} \in[a, b] x′′∈[a,b] 且
∣ x ′ − x ′ ′ ∣ < δ \left|x^{\prime}-x^{\prime \prime}\right|<\delta ∣x′−x′′∣<δ 时, 有
∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε b − a . \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\frac{\varepsilon}{b-a} . ∣f(x′)−f(x′′)