数学分析(九)-定积分03:可积条件

§ 3 § 3 §3 可积条件
从定理 9.1 及其后注中看到, 要判别一个函数是否可积, 必须研究可积条件.
一、可积的必要条件
定理 9.2 若函数 f f f [ a , b ] [a, b] [a,b] 上可积,则 f f f [ a , b ] [a, b] [a,b] 上必定有界.
证 用反证法. 若 f f f [ a , b ] [a, b] [a,b] 上无界, 则对于 [ a , b ] [a, b] [a,b] 的任一分割 T T T,
必存在属于 T T T 的某个小区间 Δ k , f \Delta_{k}, f Δk,f Δ k \Delta_{k} Δk 上无界. 在
i ≠ k i \neq k i=k 的各个小区间 Δ i \Delta_{i} Δi 上任意取定 ξ i \xi_{i} ξi, 并记
G = ∣ ∑ i = 1 f ( ξ i ) Δ x i ∣ . G=\left|\sum_{i=1} f\left(\xi_{i}\right) \Delta x_{i}\right| . G= i=1f(ξi)Δxi .
现对任意大的正数 M M M, 由于 f f f Δ k \Delta_{k} Δk 上无界,故存在
ξ k ∈ Δ k \xi_{k} \in \Delta_{k} ξkΔk, 使得
∣ f ( ξ k ) ∣ > M + G Δ x k . \left|f\left(\xi_{k}\right)\right|>\frac{M+G}{\Delta x_{k}} . f(ξk)>ΔxkM+G.
于是有
∣ ∑ i = 1 n f ( ξ i ) Δ x i ∣ ⩾ ∣ f ( ξ k ) Δ x k ∣ − ∣ ∑ i = 1 f ( ξ i ) Δ x i ∣ > M + G Δ x k ⋅ Δ x k − G = M . \begin{aligned} \left|\sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i}\right| & \geqslant\left|f\left(\xi_{k}\right) \Delta x_{k}\right|-\left|\sum_{i=1} f\left(\xi_{i}\right) \Delta x_{i}\right| \\ & >\frac{M+G}{\Delta x_{k}} \cdot \Delta x_{k}-G=M . \end{aligned} i=1nf(ξi)Δxi f(ξk)Δxk i=1f(ξi)Δxi >ΔxkM+GΔxkG=M.
由此可见, 对于无论多小的 ∥ T ∥ \|T\| T, 按上述方法选取点集
{ ξ i } \left\{\xi_{i}\right\} {ξi} 时, 总能使积分和的绝对值大于任何预先给出的正数,
这与 f f f [ a , b ] [a, b] [a,b] 上可积相矛盾.
这个定理指出, 任何可积函数一定是有界的; 但要注意, 有界函数却不一定可积.
例 1 证明狄利克雷函数
D ( x ) = { 1 , x  为有理数,  0 , x  为无理数  D(x)=\left\{\begin{array}{ll} 1, & x \text { 为有理数, } \\ 0, & x \text { 为无理数 } \end{array}\right. D(x)={1,0,x 为有理数x 为无理数 
[ 0 , 1 ] [0,1] [0,1] 上有界但不可积.
证 显然 ∣ D ( x ) ∣ ⩽ 1 , x ∈ [ 0 , 1 ] |D(x)| \leqslant 1, x \in[0,1] D(x)1,x[0,1].
对于 [ 0 , 1 ] [0,1] [0,1] 的任一分割 T T T, 由有理数和无理数在实数中的稠密性, 在属于
T T T 的任一小区间 Δ i \Delta_{i} Δi 上, 当取 ξ i \xi_{i} ξi 全为有理数时,
∑ i = 1 n D ( ξ i ) Δ x i = ∑ i = 1 n Δ x i = 1 \sum_{i=1}^{n} D\left(\xi_{i}\right) \Delta x_{i}=\sum_{i=1}^{n} \Delta x_{i}=1 i=1nD(ξi)Δxi=i=1nΔxi=1;
当取 ξ i \xi_{i} ξi 全为无理数时,
∑ i = 1 n D ( ξ i ) Δ x i = 0 \sum_{i=1}^{n} D\left(\xi_{i}\right) \Delta x_{i}=0 i=1nD(ξi)Δxi=0. 所以不论 ∥ T ∥ \|T\| T
多么小, 只要点集 { ξ i } \left\{\xi_{i}\right\} {ξi}
取法不同(全取有理数或全取无理数 ) ) ), 积分和就有不同的极限, 即 D ( x ) D(x) D(x)
[ 0 , 1 ] [0,1] [0,1] 上不可积.
由此例可见, 有界是可积的必要条件. 所以在以后讨论函数的可积性时,
总是首先假设函数是有界的, 今后不再一一申明.
二、可积的充要条件
要判断一个函数是否可积, 固然可以根据定义,
直接考察积分和是否能无限接近某一常数,但由于积分和的复杂性和那个常数不易预知,因此这是极其困难的.下面即将给出的可积准则只与被积函数本身有关,
而不涉及定积分的值.
T = ∣ Δ i ∣ i = 1 , 2 , ⋯   , n } \left.T=\left|\Delta_{i}\right| i=1,2, \cdots, n\right\} T=Δii=1,2,,n} 为对
[ a , b ] [a, b] [a,b] 的任一分割. 由 f f f [ a , b ] [a, b] [a,b] 上有界,则它在每个 Δ i \Delta_{i} Δi
上存在上、下确界:
M i = sup ⁡ x ∈ A i f ( x ) , m i = inf ⁡ x ∈ Δ i f ( x ) , i = 1 , 2 , ⋯   , n . M_{i}=\sup _{x \in \mathbb{A}_{i}} f(x), m_{i}=\inf _{x \in \Delta_{i}} f(x), i=1,2, \cdots, n . Mi=xAisupf(x),mi=xΔiinff(x),i=1,2,,n.
作和
S ( T ) = ∑ i = 1 n M i Δ x i , s ( T ) = ∑ i = 1 n m i Δ x i , S(T)=\sum_{i=1}^{n} M_{i} \Delta x_{i}, s(T)=\sum_{i=1}^{n} m_{i} \Delta x_{i}, S(T)=i=1nMiΔxi,s(T)=i=1nmiΔxi,
分别称为 f f f 关于分割 T T T 的上和与下和 (或称达布上和与达布下和,
统称达布和). 任给 ξ i ∈ Δ i , i = 1 , 2 , ⋯   , n \xi_{i} \in \Delta_{i}, i=1,2, \cdots, n ξiΔi,i=1,2,,n, 显然有
s ( T ) ⩽ ∑ i = 1 ∞ f ( ξ i ) Δ x i ⩽ S ( T ) . s(T) \leqslant \sum_{i=1}^{\infty} f\left(\xi_{i}\right) \Delta x_{i} \leqslant S(T) . s(T)i=1f(ξi)ΔxiS(T).
与积分和相比较, 达布和只与分割 T T T 有关, 而与点集
{ ξ i ∣ \left\{\xi_{i} \mid\right. {ξi 无关. 由不等式 (1),
就能通过讨论上和与下和当 ∥ T ∥ → 0 \|T\| \rightarrow 0 T0 时的极限来揭示 f f f
[ a , b ] [a, b] [a,b] 上是否可积. 所以可积性理论总是从讨论上和与下和的性质入手的.
定理9.3 (可积准则) 函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是: 任给
ε > 0 \varepsilon>0 ε>0, 总存在相应的一个分割 T T T, 使得
S ( T ) − s ( T ) < ε . S(T)-s(T)<\varepsilon . S(T)s(T)<ε.
本定理的证明依赖对上和与下和性质的详尽讨论, 这里从略(完整证明补述于 §6).
ω i = M i − m i \omega_{i}=M_{i}-m_{i} ωi=Mimi, 称为 f f f Δ i \Delta_{i} Δi 上的振幅,
有必要时也记为 ω i \omega_{i} ωi. 由于
S ( T ) − s ( T ) = ∑ i = 1 n ω i Δ x i  (或记为  ∑ T ω i Δ x i ) , \left.S(T)-s(T)=\sum_{i=1}^{n} \omega_{i} \Delta x_{i} \text { (或记为 } \sum_{T} \omega_{i} \Delta x_{i}\right), S(T)s(T)=i=1nωiΔxi (或记为 TωiΔxi),
因此可积准则又可改述如下.
定理 9.3’ 函数 f f f [ a , b ] [a, b] [a,b] 上可积的充要条件是: 任给 ε > 0 \varepsilon>0 ε>0,
总存在相应的某一分割 T T T, 使得
∑ T ω i Δ x i < ε . \sum_{T} \omega_{i} \Delta x_{i}<\varepsilon . TωiΔxi<ε.
不等式 ( 2 ) (2) (2) ( 2 ′ ) \left(2^{\prime}\right) (2) 的几何意义是:若 f f f
[ a , b ] [a, b] [a,b] 上可积,则图 9-7 中包围曲线 y = f ( x ) y=f(x) y=f(x)
的一系列小矩形面积之和可以达到任意小, 只要分割充分地细; 反之亦然.
三、可积函数类
根据可积的充要条件,我们证明下面一些类型的函数是可积的
(即可积的充分条件).外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“222px”}
图 9-7
定理 9.4 若 f f f [ a , b ] [a, b] [a,b] 上的连续函数, 则 f f f [ a , b ] [a, b] [a,b] 上可积.
证 由于 f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续, 因此在 [ a , b ] [a, b] [a,b] 上一致连续.
这就是说,任给 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0, 对 [ a , b ] [a, b] [a,b] 中任意两点
x ′ , x ′ ′ x^{\prime}, x^{\prime \prime} x,x′′, 只要
∣ x ′ − x ′ ′ ∣ < δ \left|x^{\prime}-x^{\prime \prime}\right|<\delta xx′′<δ, 便有
∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε b − a . \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\frac{\varepsilon}{b-a} . f(x)f(x′′)<baε.
所以只要对 [ a , b ] [a, b] [a,b] 所作的分割 T T T 满足 ∥ T ∥ < δ \|T\|<\delta T<δ, 在 T T T
所属的任一小区间 Δ i \Delta_{i} Δi 上, 就能使 f f f的振幅满足
ω i = M i − m i = sup ⁡ x ′ , x ′ ∈ Δ i ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ ( 1 ) ⩽ ε b − a , \omega_{i}=M_{i}-m_{i}=\sup _{x^{\prime}, x^{\prime} \in \Delta_{i}}\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|^{(1)} \leqslant \frac{\varepsilon}{b-a}, ωi=Mimi=x,xΔisupf(x)f(x′′)(1)baε,
从而导致
∑ T ω i Δ x i ⩽ ε b − a ∑ T Δ x i = ε \sum_{T} \omega_{i} \Delta x_{i} \leqslant \frac{\varepsilon}{b-a} \sum_{T} \Delta x_{i}=\varepsilon TωiΔxibaεTΔxi=ε
由定理 9.3’证得 f f f [ a , b ] [a, b] [a,b] 上可积.
读者应该注意到一致连续性在本定理证明中所起的重要作用.
定理 9.5 若 f f f 是区间 [ a , b ] [a, b] [a,b] 上只有有限个间断点的有界函数, 则 f f f
[ a , b ] [a, b] [a,b] 上可积.
证 不失一般性,这里只证明 f f f [ a , b ] [a, b] [a,b]
上仅有一个间断点的情形,并假设该间断点即为端点 b b b.
任给 ε > 0 \varepsilon>0 ε>0, 取 δ ′ \delta^{\prime} δ 满足
0 < δ ′ < ε 2 ( M − m ) 0<\delta^{\prime}<\frac{\varepsilon}{2(M-m)} 0<δ<2(Mm)ε, 且
δ ′ < b − a \delta^{\prime}<b-a δ<ba, 其中 M M M m m m 分别为 f f f [ a , b ] [a, b] [a,b]
上的上确界与下确界 (设 m < M m<M m<M, 否则 f f f 为常量函数, 显然可积). 记 f f f
在小区间 Δ ′ = [ b − δ ′ , b ] \Delta^{\prime}=\left[b-\delta^{\prime}, b\right] Δ=[bδ,b]上的振幅为
ω ′ \omega^{\prime} ω, 则
ω ′ δ ′ < ( M − m ) ⋅ ε 2 ( M − m ) = ε 2 . \omega^{\prime} \delta^{\prime}<(M-m) \cdot \frac{\varepsilon}{2(M-m)}=\frac{\varepsilon}{2} . ωδ<(Mm)2(Mm)ε=2ε.
因为 f f f [ a , b − δ ′ ] \left[a, b-\delta^{\prime}\right] [a,bδ] 上连续, 由定理 9.4 知
f f f [ a , b − δ ′ ] \left[a, b-\delta^{\prime}\right] [a,bδ] 上可积. 再由定理
9. 3 ′ ( 9.3^{\prime}( 9.3( 必要性), 存在对 [ a , b − δ ′ ] \left[a, b-\delta^{\prime}\right] [a,bδ]
的某个分割
T ′ = { Δ 1 , Δ 2 , ⋯   , Δ n − 1 } T^{\prime}=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n-1}\right\} T={Δ1,Δ2,,Δn1},
使得
∑ T ω i Δ x i < ε 2 . \sum_{T} \omega_{i} \Delta x_{i}<\frac{\varepsilon}{2} . TωiΔxi<2ε.
Δ n = Δ ′ \Delta_{n}=\Delta^{\prime} Δn=Δ, 则
T = { Δ 1 , Δ 2 , ⋯   , Δ n − 1 , Δ n } T=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n-1}, \Delta_{n}\right\} T={Δ1,Δ2,,Δn1,Δn}
是对 [ a , b ] [a, b] [a,b] 的一个分割, 对于 T T T, 有
∑ T ω i Δ x i = ∑ T ω i Δ x i + ω ′ δ ′ < ε 2 + ε 2 = ε . \sum_{T} \omega_{i} \Delta x_{i}=\sum_{T} \omega_{i} \Delta x_{i}+\omega^{\prime} \delta^{\prime}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . TωiΔxi=TωiΔxi+ωδ<2ε+2ε=ε.
根据定理 9.3’(充分性), 证得 f f f [ a , b ] [a, b] [a,b] 上可积.
定理 9.6 若 f f f [ a , b ] [a, b] [a,b] 上的单调函数, 则 f f f [ a , b ] [a, b] [a,b] 上可积.
证设 f f f 为增函数, 且 f ( a ) < f ( b ) f(a)<f(b) f(a)<f(b) (若 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b), 则 f f f 为常量函数,
显然可积). 对 [ a , b ] [a, b] [a,b] 的任一分割 T T T, 由 f f f 的增性, f f f T T T
所属的每个小区间 Δ i \Delta_{i} Δi 上的振幅为
ω i = f ( x i ) − f ( x i − 1 ) , \omega_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right), ωi=f(xi)f(xi1),
于是有
∑ T ω i Δ x i ⩽ ∑ i = 1 n [ f ( x i ) − f ( x i − 1 ) ] ∥ T ∥ = [ f ( b ) − f ( a ) ] ∥ T ∥ . \begin{aligned} \sum_{T} \omega_{i} \Delta x_{i} & \leqslant \sum_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]\|T\| \\ & =[f(b)-f(a)]\|T\| . \end{aligned} TωiΔxii=1n[f(xi)f(xi1)]T=[f(b)f(a)]T∥.
由此可见, 任给 ε > 0 \varepsilon>0 ε>0, 只要
∥ T ∥ < ε f ( b ) − f ( a ) \|T\|<\frac{\varepsilon}{f(b)-f(a)} T<f(b)f(a)ε, 就有
∑ T ω i Δ x i < ε , \sum_{T} \omega_{i} \Delta x_{i}<\varepsilon, TωiΔxi<ε,
所以 f f f [ a , b ] [a, b] [a,b] 上可积.
(1) 此等式成立的证明留作本节习题(第 5 题)。
注意, 单调函数即使有无限多个间断点, 仍不失其可积性.
例 2 试用两种方法证明函数
f ( x ) = { 0 , x = 0 , 1 n , 1 n + 1 < x ⩽ 1 n , n = 1 , 2 , ⋯ f(x)=\left\{\begin{array}{ll} 0, & x=0, \\ \frac{1}{n}, & \frac{1}{n+1}<x \leqslant \frac{1}{n}, n=1,2, \cdots \end{array}\right. f(x)={0,n1,x=0,n+11<xn1,n=1,2,
在区间 [ 0 , 1 ] [0,1] [0,1] 上可积.
证 证法一 由于 f f f 是一增函数 (图 9-8), 虽然它在 [ 0 , 1 ] [0,1] [0,1]
上有无限多个间断点 x n = 1 n , n = 2 , 3 , ⋯ x_{n}=\frac{1}{n}, n=2,3, \cdots xn=n1,n=2,3,, 但由定理 9.6
,仍保证它在 [ 0 , 1 ] [0,1] [0,1] 上可积.
证法二 (仅利用定理 9.3’和定理 9.5) 任给 ε > 0 \varepsilon>0 ε>0,由于
lim ⁡ n → ∞ 1 n = 0 \lim \limits_{n \rightarrow \infty} \frac{1}{n}=0 nlimn1=0, 因此当 n n n 充分大时
1 n < ε 2 \frac{1}{n}<\frac{\varepsilon}{2} n1<2ε, 这说明 f f f
[ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上只有有限个间断点. 利用定理 9.5
和定理
9.3’外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“198px”}
图 9-8 推知 f f f [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 上可积,
且存在对 [ ε 2 , 1 ] \left[\frac{\varepsilon}{2}, 1\right] [2ε,1] 的某一分割
T ′ T^{\prime} T, 使得
∑ T ω i Δ x i < ε 2 . \sum_{T} \omega_{i} \Delta x_{i}<\frac{\varepsilon}{2} . TωiΔxi<2ε.
再把小区间 [ 0 , ε 2 ] \left[0, \frac{\varepsilon}{2}\right] [0,2ε] T ′ T^{\prime} T 合并,
成为对 [ 0 , 1 ] [0,1] [0,1] 的一个分割 T T T. 由于 f f f
[ 0 , ε 2 ] \left[0, \frac{\varepsilon}{2}\right] [0,2ε] 上的振幅 ω 0 \omega_{0} ω0 < 1 <1 <1,
因此得到
∑ T ω i Δ x i = ω 0 ⋅ ε 2 + ∑ T ω i Δ x i < ε 2 + ε 2 = ε . \sum_{T} \omega_{i} \Delta x_{i}=\omega_{0} \cdot \frac{\varepsilon}{2}+\sum_{T} \omega_{i} \Delta x_{i}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . TωiΔxi=ω02ε+TωiΔxi<2ε+2ε=ε.
所以 f f f [ 0 , 1 ] [0,1] [0,1] 上可积.
事实上,例 2 的第二种证法并不限于该例中的具体函数,
更一般的命题见本节习题第 4 题.下面例 3 的证明思想与它可谓异曲同工.
例 3 证明黎曼函数
R ( x ) = { 1 q , x = p q ( p , q ∈ N + , p q  为既约真分数  ) , 0 , x = 0 , 1  以及  ( 0 , 1 )  内的无理数  R(x)=\left\{\begin{array}{ll} \frac{1}{q}, & x=\frac{p}{q}\left(p, q \in \mathbf{N}_{+}, \frac{p}{q} \text { 为既约真分数 }\right), \\ 0, x=0,1 \text { 以及 }(0,1) \text { 内的无理数 } \end{array}\right. R(x)={q1,0,x=0,1 以及 (0,1) 内的无理数 x=qp(p,qN+,qp 为既约真分数 ),
在区间 [ 0 , 1 ] [0,1] [0,1] 上可积,且
∫ 0 1 R ( x ) d x = 0. \int_{0}^{1} R(x) \mathrm{d} x=0 . 01R(x)dx=0.
分析 已知黎曼函数在 x = 0 , 1 x=0,1 x=0,1 以及一切无理点处连续, 而在 ( 0 , 1 ) (0,1) (0,1)
上的一切有理点处间断. 证明它在 [ 0 , 1 ] [0,1] [0,1] 上可积的直观构思如下: 如图 9-9
所示, 在黎曼函数的图像中画一条水平直线 y = ε 2 y=\frac{\varepsilon}{2} y=2ε.
在此直线上方只有函数图像中有限个点, 这些点所对应的自变量可被含于属于分割
T T T 的有限个小区间中, 当 ∥ T ∥ \|T\| T 足够小时, 这有限个小区间的总
长可为任意小; 而 T T T 中其余小区间上函数的振幅不大于
ε 2 \frac{\varepsilon}{2} 2ε, 把这两部分相合, 便可证得
∑ T ω i Δ x i < ε \sum_{T} \omega_{i} \Delta x_{i}<\varepsilon TωiΔxi<ε.
下面写出这个证明.外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“276px”}
图 9-9
证 任给 ε > 0 \varepsilon>0 ε>0, 在 [ 0 , 1 ] [0,1] [0,1] 上使得
1 q > ε 2 \frac{1}{q}>\frac{\varepsilon}{2} q1>2ε 的有理点 p q \frac{p}{q} qp 只有有限个,
设它们为 r 1 , ⋯   , r k r_{1}, \cdots, r_{k} r1,,rk.现对 [ 0 , 1 ] [0,1] [0,1] 作分割
T = ∣ Δ 1 , Δ 2 , ⋯   , Δ n ∣ T=\left|\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n}\right| T=Δ1,Δ2,,Δn, 使
∥ T ∥ < ε 2 k \|T\|<\frac{\varepsilon}{2 k} T<2kε, 并把 T T T 中所有小区间分为
∣ Δ i ′ ∣ i = \left|\Delta_{i}^{\prime}\right| i= Δii= 1 , 2 , ⋯   , m } 1,2, \cdots, m\} 1,2,,m}
{ Δ i ′ ′ ∣ i = 1 , 2 , ⋯   , n − m } \left\{\Delta_{i}^{\prime \prime} \mid i=1,2, \cdots, n-m\right\} {Δi′′i=1,2,,nm}
两类. 其中 { Δ i ′ } \left\{\Delta_{i}^{\prime}\right\} {Δi} 为含有
{ r i ∣ i = 1 , 2 , ⋯   , k } \left\{r_{i} \mid i=1,2, \cdots, k\right\} {rii=1,2,,k}
中点的所有小区间,这类小区间的个数 m ⩽ 2 k m \leqslant 2 k m2k (当所有 r i r_{i} ri
恰好都是 T T T 的分割点时才有 m = 2 k m=2 k m=2k );而
{ Δ i ′ ′ } \left\{\Delta_{i}^{\prime \prime}\right\} {Δi′′} T T T 中所有其余不含
{ r i } \left\{r_{i}\right\} {ri} 中点的小区间. 由于 f f f Δ i ′ \Delta_{i}^{\prime} Δi
上的振幅 ω i ′ ⩽ 1 2 \omega_{i}^{\prime} \leqslant \frac{1}{2} ωi21,于是
∑ i = 1 m ω i ′ Δ x i ′ ⩽ 1 2 ∑ i = 1 m Δ x i ′ ⩽ 1 2 ⋅ 2 k ∥ T ∥ < ε 2 ; \sum_{i=1}^{m} \omega_{i}^{\prime} \Delta x_{i}^{\prime} \leqslant \frac{1}{2} \sum_{i=1}^{m} \Delta x_{i}^{\prime} \leqslant \frac{1}{2} \cdot 2 k\|T\|<\frac{\varepsilon}{2} ; i=1mωiΔxi21i=1mΔxi212kT<2ε;
f f f Δ ′ ′ \Delta^{\prime \prime} Δ′′, 上的振幅
ω i ′ ′ ⩽ ε 2 \omega_{i}^{\prime \prime} \leqslant \frac{\varepsilon}{2} ωi′′2ε, 于是
∑ i = 1 n − m ω i ′ ′ Δ x i ′ ′ ⩽ ε 2 ∑ i = 1 n − m Δ x i ′ ′ < ε 2 . \sum_{i=1}^{n-m} \omega_{i}^{\prime \prime} \Delta x_{i}^{\prime \prime} \leqslant \frac{\varepsilon}{2} \sum_{i=1}^{n-m} \Delta x_{i}^{\prime \prime}<\frac{\varepsilon}{2} . i=1nmωi′′Δxi′′2εi=1nmΔxi′′<2ε.
把这两部分合起来,便证得
∑ i = 1 n ω i Δ x i = ∑ i = 1 m ω i ′ Δ x i ′ + ∑ i = 1 n − m ω i ′ ′ Δ x i ′ ′ < ε , \sum_{i=1}^{n} \omega_{i} \Delta x_{i}=\sum_{i=1}^{m} \omega_{i}^{\prime} \Delta x_{i}^{\prime}+\sum_{i=1}^{n-m} \omega_{i}^{\prime \prime} \Delta x_{i}^{\prime \prime}<\varepsilon, i=1nωiΔxi=i=1mωiΔxi+i=1nmωi′′Δxi′′<ε,
f f f [ 0 , 1 ] [0,1] [0,1]
上可积.外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“582px”}
∫ 0 1 R ( x ) d x = lim ⁡ ∣ T ∣ → 0 ∑ i = 1 n R ( ξ i ) Δ x i = 0. \int_{0}^{1} R(x) \mathrm{d} x=\lim \limits_{|T| \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}\right) \Delta x_{i}=0 . 01R(x)dx=T0limi=1nR(ξi)Δxi=0.
习 题 9.3
1. 证明: 若 T ′ T^{\prime} T T T T 增加若干个分点后所得的分割, 则
∑ T ω i ′ Δ x i ′ ⩽ ∑ T ω i Δ x i \sum_{T} \omega_{i}^{\prime} \Delta x_{i}^{\prime} \leqslant \sum_{T} \omega_{i} \Delta x_{i} TωiΔxiTωiΔxi.
2. 证明: 若 f f f [ a , b ] [a, b] [a,b] 上可积, [ α , β ] ⊂ [ a , b ] [\alpha, \beta] \subset[a, b] [α,β][a,b], 则
f f f [ α , β ] [\alpha, \beta] [α,β] 上也可积.
3. 设 f , g f, g f,g 均为定义在 [ a , b ] [a, b] [a,b] 上的有界函数, 仅在有限个点处
f ( x ) ≠ g ( x ) f(x) \neq g(x) f(x)=g(x). 证明: 若 f f f [ a , b ] [a, b] [a,b] 上可
积,则 g g g [ a , b ] [a, b] [a,b] 上也可积, 且
∫ a b f ( x ) d x = ∫ a b g ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} g(x) \mathrm{d} x abf(x)dx=abg(x)dx.
4. 设 f f f [ a , b ] [a, b] [a,b] 上有界,
{ a n ∣ ⊂ [ a , b ] , lim ⁡ a n = c \left\{a_{n} \mid \subset[a, b], \lim a_{n}=c\right. {an∣⊂[a,b],liman=c. 证明: 若 f f f
[ a , b ] [a, b] [a,b] 上只有 a n ( n = 1 , 2 , ⋯   ) a_{n}(n=1,2, \cdots) an(n=1,2,) 为其间断点, 则 f f f [ a , b ] [a, b] [a,b]
上可积.
5. 证明: 若 f f f 在区间 Δ \Delta Δ 上有界,则
sup ⁡ x ∈ Δ f ( x ) − inf ⁡ x ∈ Δ f ( x ) = sup ⁡ x 1 , x Δ ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ . \sup _{x \in \Delta} f(x)-\inf _{x \in \Delta} f(x)=\sup _{x_{1}, x_{\Delta}}\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| . xΔsupf(x)xΔinff(x)=x1,xΔsupf(x)f(x′′).
6. 证明函数
f ( x ) = { 0 , x = 0 , 1 x − [ 1 x ] , x ∈ ( 0 , 1 ] f(x)=\left\{\begin{array}{ll} 0, & x=0, \\ \frac{1}{x}-\left[\frac{1}{x}\right], & x \in(0,1] \end{array}\right. f(x)={0,x1[x1],x=0,x(0,1]
[ 0 , 1 ] [0,1] [0,1] 上可积.
7. 设函数 f f f [ a , b ] [a, b] [a,b] 上有定义, 且对于任给的 ε > 0 \varepsilon>0 ε>0, 存在
[ a , b ] [a, b] [a,b] 上的可积函数 g g g, 使得
∣ f ( x ) − g ( x ) ∣ < ε , x ∈ [ a , b ] . |f(x)-g(x)|<\varepsilon, \quad x \in[a, b] . f(x)g(x)<ε,x[a,b].
证明 f f f [ a , b ] [a, b] [a,b] 上可积.

  • 24
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值