§ 1 关于实数集完备性的基本定理
在第一、二章中,我们证明了关于实数集的确界原理和数列的单调有界定理,给出了数列的致密性定理和柯西收敛准则.
这些命题以不同方式反映了实数集
R
\mathbf{R}
R 的一种特性,
通常称为实数的完备性或实数的连续性. 可以举例说明,
有理数集就不具有这种特性 (本节习题 4).
有关实数集完备性的基本定理,除上面这些定理外,
还有区间套定理、聚点定理和有限覆盖定理. 在本节中将阐述这三个基本定理,
并指出所有这六个基本定理的等价性.
一、区间套定理
定义 1 设闭区间列
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}
具有如下性质:
(i)
[
a
n
,
b
n
]
⊃
[
a
n
+
1
,
b
n
+
1
]
,
n
=
1
,
2
,
⋯
\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots
[an,bn]⊃[an+1,bn+1],n=1,2,⋯;
(ii)
lim
n
→
∞
(
b
n
−
a
n
)
=
0
\lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0
n→∞lim(bn−an)=0,
则称
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]} 为闭区间套,或简称区间套.
这里性质
(i)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:
a
1
⩽
a
2
⩽
⋯
⩽
a
n
⩽
⋯
⩽
b
n
⩽
⋯
⩽
b
2
⩽
b
1
.
a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant \cdots \leqslant b_{n} \leqslant \cdots \leqslant b_{2} \leqslant b_{1} .
a1⩽a2⩽⋯⩽an⩽⋯⩽bn⩽⋯⩽b2⩽b1.
定理 7.1 (区间套定理) 若
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}
是一个区间套, 则在实数系中存在唯一的一点
ξ
\xi
ξ, 使得
ξ
∈
[
a
n
,
b
n
]
,
n
=
1
,
2
,
⋯
\xi \in\left[a_{n}, b_{n}\right], n=1,2, \cdots
ξ∈[an,bn],n=1,2,⋯, 即
a
n
⩽
ξ
⩽
b
n
,
n
=
1
,
2
,
⋯
.
a_{n} \leqslant \xi \leqslant b_{n}, n=1,2, \cdots .
an⩽ξ⩽bn,n=1,2,⋯.
证 由 (1) 式,
{
a
n
}
\left\{a_{n}\right\}
{an} 为递增有界数列, 依单调有界定理,
{
a
n
∣
\left\{a_{n} \mid\right.
{an∣ 有极限
ξ
\xi
ξ, 且有
a
n
⩽
ξ
,
n
=
1
,
2
,
⋯
.
a_{n} \leqslant \xi, n=1,2, \cdots .
an⩽ξ,n=1,2,⋯.
同理, 递减有界数列
{
b
n
}
\left\{b_{n}\right\}
{bn} 也有极限, 并按区间套的条件
(ii), 有
lim
n
→
∞
b
n
=
lim
n
→
∞
a
n
=
ξ
,
\lim \limits_{n \rightarrow \infty} b_{n}=\lim \limits_{n \rightarrow \infty} a_{n}=\xi,
n→∞limbn=n→∞liman=ξ,
且.
b
n
⩾
ξ
,
n
=
1
,
2
,
⋯
.
b_{n} \geqslant \xi, n=1,2, \cdots .
bn⩾ξ,n=1,2,⋯.
联合 (3)、(5) 即得 (2) 式.
最后证明满足 (2) 的
ξ
\xi
ξ 是唯一的. 设数
ξ
′
\xi^{\prime}
ξ′ 也满足
a
n
⩽
ξ
′
⩽
b
n
,
n
=
1
,
2
,
⋯
,
a_{n} \leqslant \xi^{\prime} \leqslant b_{n}, n=1,2, \cdots,
an⩽ξ′⩽bn,n=1,2,⋯,
则由 (2) 式有
∣
ξ
−
ξ
′
∣
⩽
b
n
−
a
n
,
n
=
1
,
2
,
⋯
.
\left|\xi-\xi^{\prime}\right| \leqslant b_{n}-a_{n}, n=1,2, \cdots .
∣ξ−ξ′∣⩽bn−an,n=1,2,⋯.
由区间套的条件 (ii) 得
∣
ξ
−
ξ
′
∣
⩽
lim
n
→
∞
(
b
n
−
a
n
)
=
0
,
\left|\xi-\xi^{\prime}\right| \leqslant \lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0,
∣ξ−ξ′∣⩽n→∞lim(bn−an)=0,
故有
ξ
′
=
ξ
\xi^{\prime}=\xi
ξ′=ξ.
由 (4) 式容易推得如下很有用的区间套性质:
推论 若
ξ
∈
[
a
n
,
b
n
]
(
n
=
1
,
2
,
⋯
)
\xi \in\left[a_{n}, b_{n}\right](n=1,2, \cdots)
ξ∈[an,bn](n=1,2,⋯) 是区间套
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]} 所确定的点,则对任给的
ε
>
0
\varepsilon>0
ε>0, 存在
N
>
0
N>0
N>0, 使得当
n
>
N
n>N
n>N 时, 有
[
a
n
,
b
n
]
⊂
U
(
ξ
;
ε
)
.
\left[a_{n}, b_{n}\right] \subset U(\xi ; \varepsilon) .
[an,bn]⊂U(ξ;ε).
注区间套定理中要求各个区间都是闭区间, 才能保证定理的结论成立.
对于开区间列,如
{
(
0
,
1
n
)
}
\left\{\left(0, \frac{1}{n}\right)\right\}
{(0,n1)},
虽然其中各个开区间也是前一个包含后一个, 且
lim
n
→
∞
(
1
n
−
0
)
=
0
\lim \limits_{n \rightarrow \infty}\left(\frac{1}{n}-0\right)=0
n→∞lim(n1−0)=0,但不存在属于所有开区间的公共点.
例 1 用区间套定理证明连续函数根的存在性定理.
证 设
f
f
f 在区间
[
a
,
b
]
[a, b]
[a,b] 上连续,
f
(
a
)
f
(
b
)
<
0
f(a) f(b)<0
f(a)f(b)<0, 并且记
[
a
1
,
b
1
]
=
[
a
,
b
]
\left[a_{1}, b_{1}\right]=[a, b]
[a1,b1]=[a,b]. 令
c
1
=
a
1
+
b
1
2
c_{1}=\frac{a_{1}+b_{1}}{2}
c1=2a1+b1,如果
f
(
c
1
)
=
0
f\left(c_{1}\right)=0
f(c1)=0,
结论已经成立, 故可设
f
(
c
1
)
≠
0
f\left(c_{1}\right) \neq 0
f(c1)=0. 那么
f
(
a
1
)
f
(
c
1
)
f\left(a_{1}\right) f\left(c_{1}\right)
f(a1)f(c1) 与
f
(
c
1
)
f
(
b
1
)
f\left(c_{1}\right) f\left(b_{1}\right)
f(c1)f(b1) 有一个小于零, 不妨设
f
(
a
1
)
f
(
c
1
)
<
0
f\left(a_{1}\right) f\left(c_{1}\right)<0
f(a1)f(c1)<0, 记
[
a
2
,
b
2
]
=
[
a
1
,
c
1
]
\left[a_{2}, b_{2}\right]=\left[a_{1}, c_{1}\right]
[a2,b2]=[a1,c1]. 再令
c
2
=
a
2
+
b
2
2
c_{2}=\frac{a_{2}+b_{2}}{2}
c2=2a2+b2, 如果
f
(
c
2
)
=
0
f\left(c_{2}\right)=0
f(c2)=0,
结论已经成立,故同样可设
f
(
c
2
)
≠
0
f\left(c_{2}\right) \neq 0
f(c2)=0. 那么
f
f
f 在
[
a
2
,
c
2
]
\left[a_{2}, c_{2}\right]
[a2,c2] 与
[
c
2
,
b
2
]
\left[c_{2}, b_{2}\right]
[c2,b2]
这两个区间中的某一个区间上端点值异号,并记这个区间为
[
a
3
,
b
3
]
\left[a_{3}, b_{3}\right]
[a3,b3]. 将这个过程无限重复下去,就得到一列闭区间
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}, 满足:
(1)
[
a
n
,
b
n
]
⊃
[
a
n
+
1
,
b
n
+
1
]
,
n
=
1
,
2
,
⋯
\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots
[an,bn]⊃[an+1,bn+1],n=1,2,⋯;
(2)
lim
n
→
∞
(
b
n
−
a
n
)
=
lim
n
→
=
2
b
−
a
2
n
−
1
=
0
\lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim \limits_{n \rightarrow=2} \frac{b-a}{2^{n-1}}=0
n→∞lim(bn−an)=n→=2lim2n−1b−a=0;
(3)
f
(
a
n
)
f
(
b
n
)
<
0
,
n
=
1
,
2
,
⋯
f\left(a_{n}\right) f\left(b_{n}\right)<0, n=1,2, \cdots
f(an)f(bn)<0,n=1,2,⋯.
由 (1) 和 (2) 可知
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}
是一个区间侌, 由定理 7.1, 存在
ξ
∈
[
a
n
,
b
n
]
,
n
=
1
\xi \in\left[a_{n}, b_{n}\right], n=1
ξ∈[an,bn],n=1,
2
,
⋯
2, \cdots
2,⋯, 且有
lim
n
→
∞
a
n
=
lim
n
→
∞
b
n
=
ξ
\lim \limits_{n \rightarrow \infty} a_{n}=\lim \limits_{n \rightarrow \infty} b_{n}=\xi
n→∞liman=n→∞limbn=ξ.
因为
f
f
f 在点
ξ
\xi
ξ 连续, 所以由 (3) 得
f
2
(
ξ
)
=
lim
n
→
∞
f
(
a
n
)
f
(
b
n
)
⩽
0
,
f^{2}(\xi)=\lim \limits_{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right) \leqslant 0,
f2(ξ)=n→∞limf(an)f(bn)⩽0,
则必有
f
(
ξ
)
=
0
f(\xi)=0
f(ξ)=0. 显然
ξ
∈
[
a
,
b
]
\xi \in[a, b]
ξ∈[a,b], 它就是
f
f
f 的一个零点.
二、聚点定理与有限覆盖定理
定义 2 设
S
S
S 为数轴上的点集,
ξ
\xi
ξ 为定点 (它可以属于
S
S
S, 也可以不属于
S
S
S ). 若
ξ
\xi
ξ 的任何邻域都含有
S
S
S 中无穷多个点, 则称
ξ
\xi
ξ 为点集
S
S
S
的一个聚点.
例如, 点集
S
=
{
(
−
1
)
n
+
1
n
}
S=\left\{(-1)^{n}+\frac{1}{n}\right\}
S={(−1)n+n1} 有两个聚点
ξ
1
=
−
1
\xi_{1}=-1
ξ1=−1 和
ξ
2
=
1
\xi_{2}=1
ξ2=1; 点集
S
=
{
1
n
}
S=\left\{\frac{1}{n}\right\}
S={n1}
只有一个聚点
ξ
=
0
\xi=0
ξ=0; 又若
S
S
S 为开区间
(
a
,
b
)
(a, b)
(a,b), 则
(
a
,
b
)
(a, b)
(a,b)
上每一点以及端点
a
,
b
a, b
a,b 都是
S
S
S 的聚点; 而正整数集
N
\mathbf{N}
N.
没有聚点,任何有限数集也没有聚点.
聚点概念的另两个等价定义如下.
定义
2
′
2^{\prime}
2′ 对于点集
S
S
S, 若点
ξ
\xi
ξ 的任何
ε
\varepsilon
ε
邻域都含有
S
S
S 中异于
ξ
\xi
ξ 的点, 即
U
∘
(
ξ
;
ε
)
∩
S
≠
∅
U^{\circ}(\xi ; \varepsilon) \cap S \neq \varnothing
U∘(ξ;ε)∩S=∅, 则称
ξ
\xi
ξ 为
S
S
S 的一个聚点.
定义
2
n
\mathbf{2}^{n}
2n 若存在各项互异的收玫数列
{
x
n
∣
⊂
S
\left\{x_{n} \mid \subset S\right.
{xn∣⊂S, 则其极限
lim
n
→
∞
x
n
=
ξ
\lim \limits_{n \rightarrow \infty} x_{n}=\xi
n→∞limxn=ξ 称为
S
S
S 的一个聚点.
关于以上三个定义等价性的证明,我们简述如下.
定义
2
⇒
2 \Rightarrow
2⇒ 定义
2
′
2^{\prime}
2′ 是显然的, 定义
2
′
′
⇒
2^{\prime \prime} \Rightarrow
2′′⇒ 定义 2 也不难得到; 现证定义
2
′
⇒
2^{\prime} \Rightarrow
2′⇒ 定义
2
′
′
2^{\prime \prime}
2′′ :
设
ξ
\xi
ξ 为
S
S
S (按定义
2
′
2^{\prime}
2′ ) 的聚点, 则对任给的
ε
>
0
\varepsilon>0
ε>0, 存在
x
∈
U
∘
(
ξ
;
ε
)
∩
S
x \in U^{\circ}(\xi ; \varepsilon) \cap S
x∈U∘(ξ;ε)∩S.
令
ε
1
=
1
\varepsilon_{1}=1
ε1=1, 则存在
x
1
∈
U
∘
(
ξ
;
ε
1
)
∩
S
x_{1} \in U^{\circ}\left(\xi ; \varepsilon_{1}\right) \cap S
x1∈U∘(ξ;ε1)∩S;
令
ε
2
=
min
{
1
2
,
∣
ξ
−
x
1
∣
}
\varepsilon_{2}=\min \left\{\frac{1}{2},\left|\xi-x_{1}\right|\right\}
ε2=min{21,∣ξ−x1∣},
则存在
x
2
∈
U
∘
(
ξ
;
ε
2
)
∩
S
x_{2} \in U^{\circ}\left(\xi ; \varepsilon_{2}\right) \cap S
x2∈U∘(ξ;ε2)∩S,
且显然
x
2
≠
x
1
x_{2} \neq x_{1}
x2=x1;
令
ε
n
=
min
{
1
n
,
∣
ξ
−
x
n
−
1
∣
}
\varepsilon_{n}=\min \left\{\frac{1}{n},\left|\xi-x_{n-1}\right|\right\}
εn=min{n1,∣ξ−xn−1∣},
则存在
x
n
∈
U
∘
(
ξ
;
ε
n
)
∩
S
x_{n} \in U^{\circ}\left(\xi ; \varepsilon_{n}\right) \cap S
xn∈U∘(ξ;εn)∩S,
且
x
n
x_{n}
xn 与
x
1
,
⋯
,
x
n
−
1
x_{1}, \cdots, x_{n-1}
x1,⋯,xn−1 互异.
无限地重复以上步骤, 得到
S
S
S 中各项互异的数列
{
x
n
}
\left\{x_{n}\right\}
{xn},
且由
∣
ξ
−
x
n
∣
<
ε
n
⩽
1
n
\left|\xi-x_{n}\right|<\varepsilon_{n} \leqslant \frac{1}{n}
∣ξ−xn∣<εn⩽n1,
易见
lim
n
→
∞
x
n
=
ξ
\lim \limits_{n \rightarrow \infty} x_{n}=\xi
n→∞limxn=ξ.
定理 7.2 (魏尔斯特拉斯 (Weierstrass) 聚点定理) 实轴上的任一有界无限点集
S
S
S至少有一个聚点.
证 证法一 因
S
S
S 为有界点集, 故存在
M
>
0
M>0
M>0, 使得
S
⊂
[
−
M
,
M
]
S \subset[-M, M]
S⊂[−M,M], 记
[
a
1
,
b
1
]
=
[
−
M
,
M
]
\left[a_{1}, b_{1}\right]=[-M, M]
[a1,b1]=[−M,M].
现将
[
a
1
,
b
1
]
\left[a_{1}, b_{1}\right]
[a1,b1] 等分为两个子区间. 因
S
S
S 为无限点集,
故两个子区间中至少有一个含有
S
S
S 中无穷多个点,记此子区间为
[
a
2
,
b
2
]
\left[a_{2}, b_{2}\right]
[a2,b2], 则
[
a
1
,
b
1
]
⊃
[
a
2
,
b
2
]
\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right]
[a1,b1]⊃[a2,b2], 且
b
2
−
a
2
=
1
2
(
b
1
−
a
1
)
=
M
.
b_{2}-a_{2}=\frac{1}{2}\left(b_{1}-a_{1}\right)=M .
b2−a2=21(b1−a1)=M.
再将
[
a
2
,
b
2
]
\left[a_{2}, b_{2}\right]
[a2,b2] 等分为两个子区间,
则其中至少有一个子区间含有
S
S
S 中无穷多个点,取出这样的一个子区间, 记为
[
a
3
,
b
3
]
\left[a_{3}, b_{3}\right]
[a3,b3], 则
[
a
2
,
b
2
]
⊃
[
a
3
,
b
3
]
\left[a_{2}, b_{2}\right] \supset\left[a_{3}, b_{3}\right]
[a2,b2]⊃[a3,b3], 且
b
3
−
a
3
=
1
2
(
b
2
−
a
2
)
=
M
2
.
b_{3}-a_{3}=\frac{1}{2}\left(b_{2}-a_{2}\right)=\frac{M}{2} .
b3−a3=21(b2−a2)=2M.
将此等分子区间的步骤无限地进行下去,得到一个区间列
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}, 它满足
[
a
n
,
b
n
]
⊃
[
a
n
+
1
,
b
n
+
1
]
,
n
=
1
,
2
,
⋯
,
b
n
−
a
n
=
M
2
n
−
2
→
0
(
n
→
∞
)
,
\begin{array}{c} {\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots,} \\ b_{n}-a_{n}=\frac{M}{2^{n-2}} \rightarrow 0(n \rightarrow \infty), \end{array}
[an,bn]⊃[an+1,bn+1],n=1,2,⋯,bn−an=2n−2M→0(n→∞),
即
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}
是区间套,且其中每一个闭区间都含有
S
S
S 中无穷多个点.
由区间套定理,存在唯一的一点
ξ
∈
[
a
n
,
b
n
]
,
n
=
1
,
2
,
⋯
\xi \in\left[a_{n}, b_{n}\right], n=1,2, \cdots
ξ∈[an,bn],n=1,2,⋯. 于是由定理 7.1
的推论,对任给的
ε
>
0
\varepsilon>0
ε>0, 存在
N
>
0
N>0
N>0, 当
n
>
N
n>N
n>N 时有
[
a
n
,
b
n
]
⊂
U
(
ξ
;
ε
)
\left[a_{n}, b_{n}\right] \subset U(\xi ; \varepsilon)
[an,bn]⊂U(ξ;ε). 从而
U
(
ξ
;
ε
)
U(\xi ; \varepsilon)
U(ξ;ε) 内含有
S
S
S 中无穷多个点, 按定义
2
,
ξ
2, \xi
2,ξ 为
S
S
S
的一个聚点.
证法二 设
S
S
S 是有界无限点集. 在
S
S
S 中取一列两两不同的点列
{
x
n
}
\left\{x_{n}\right\}
{xn}, 显然
{
x
n
}
\left\{x_{n}\right\}
{xn} 是有界点列.
由致密性定理,
{
x
n
}
\left\{x_{n}\right\}
{xn} 存在一个收敛的子列
{
x
n
4
}
\left\{x_{n_{4}}\right\}
{xn4}, 其极限设为
x
0
x_{0}
x0. 那么对于任意正数
ε
\varepsilon
ε, 存在
K
K
K, 当
k
>
K
k>K
k>K 时, 有
x
0
−
ε
<
x
n
k
<
x
0
+
ε
x_{0}-\varepsilon<x_{n_{k}}<x_{0}+\varepsilon
x0−ε<xnk<x0+ε. 这就说明
(
x
0
−
ε
,
x
0
+
ε
)
\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)
(x0−ε,x0+ε) 含有
S
S
S 中无限多
个点, 即
x
0
x_{0}
x0 是
S
S
S 的一个聚点.
十分明显, 致密性定理是聚点定理的一种特殊情形. 这只需把有界数列
{
x
n
}
\left\{x_{n}\right\}
{xn} 看成有界点集
S
S
S, 并把
{
x
n
}
\left\{x_{n}\right\}
{xn}
中的无限多个"项"看成
S
S
S 中的无限多个"点".
定义 3 设
S
S
S 为数轴上的点集,
H
H
H 为开区间的集合 (即
H
H
H
的每一个元素都是形如
(
α
,
β
)
(\alpha, \beta)
(α,β) 的开区间). 若
S
S
S
中任何一点都含在
H
H
H 中至少一个开区间内, 则称
H
H
H 为
S
S
S 的一个开覆盖,
或称
H
H
H 覆盖
S
S
S. 若
H
H
H 中开区间的个数是无限 (有限) 的, 则称
H
H
H 为
S
S
S 的一个无限开覆盖 (有限开覆盖).
在具体问题中, 一个点集的开覆盖常由该问题的某些条件所确定. 例如, 若函数
f
f
f在
(
a
,
b
)
(a, b)
(a,b) 上连续, 则给定
ε
>
0
\varepsilon>0
ε>0, 对每一点
x
∈
(
a
,
b
)
x \in(a, b)
x∈(a,b),
都可确定正数
δ
x
\delta_{x}
δx (它依赖于
ε
\varepsilon
ε 与
x
x
x ),使得当
x
′
∈
U
(
x
;
δ
x
)
x^{\prime} \in U\left(x ; \delta_{x}\right)
x′∈U(x;δx) 时, 有
∣
f
(
x
′
)
−
f
(
x
)
∣
<
ε
\left|f\left(x^{\prime}\right)-f(x)\right|<\varepsilon
∣f(x′)−f(x)∣<ε.
这样就得到一个开区间集
H
=
{
(
x
−
δ
x
,
x
+
δ
x
)
∣
x
∈
(
a
,
b
)
}
,
H=\left\{\left(x-\delta_{x}, x+\delta_{x}\right) \mid x \in(a, b)\right\},
H={(x−δx,x+δx)∣x∈(a,b)},
它是区间
(
a
,
b
)
(a, b)
(a,b) 的一个无限开覆盖.
定理 7.3 (海涅一博雷尔 (Heine-Borel) 有限覆盖定理) 设
H
H
H 为闭区间
[
a
,
b
]
[a, b]
[a,b] 的一个(无限) 开覆盖, 则从
H
H
H 中可选出有限个开区间来覆盖
[
a
,
b
]
[a, b]
[a,b].
证 用反证法 假设定理的结论不成立, 即不能用
H
H
H 中有限个开区间来覆盖
[
a
,
b
]
[a, b]
[a,b].
将
[
a
,
b
]
[a, b]
[a,b] 等分为两个子区间, 则其中至少有一个子区间不能用
H
H
H
中有限个开区间来覆盖. 记这个子区间为
[
a
1
,
b
1
]
\left[a_{1}, b_{1}\right]
[a1,b1], 则
[
a
1
,
b
1
]
⊂
[
a
,
b
]
\left[a_{1}, b_{1}\right] \subset[a, b]
[a1,b1]⊂[a,b], 且
b
1
−
a
1
=
1
2
(
b
−
a
)
b_{1}-a_{1}=\frac{1}{2}(b-a)
b1−a1=21(b−a).
再将
[
a
1
,
b
1
]
\left[a_{1}, b_{1}\right]
[a1,b1] 等分为两个子区间, 同样,
其中至少有一个子区间不能用
H
H
H 中有限个开区间来覆盖. 记这个子区间为
[
a
2
,
b
2
]
\left[a_{2}, b_{2}\right]
[a2,b2], 则
[
a
2
,
b
2
]
⊂
[
a
1
,
b
1
]
\left[a_{2}, b_{2}\right] \subset\left[a_{1}, b_{1}\right]
[a2,b2]⊂[a1,b1], 且
b
2
−
a
2
=
1
2
2
(
b
−
a
)
b_{2}-a_{2}=\frac{1}{2^{2}}(b-a)
b2−a2=221(b−a).
重复上述步骤并不断地进行下去,则得到一个闭区间列
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]}, 它满足
[
a
n
,
b
n
]
⊃
[
a
n
+
1
,
b
n
+
1
]
,
n
=
1
,
2
,
⋯
,
b
n
−
a
n
=
1
2
n
(
b
−
a
)
→
0
(
n
→
∞
)
,
\begin{array}{l} {\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots,} \\ b_{n}-a_{n}=\frac{1}{2^{n}}(b-a) \rightarrow 0(n \rightarrow \infty), \end{array}
[an,bn]⊃[an+1,bn+1],n=1,2,⋯,bn−an=2n1(b−a)→0(n→∞),
即
{
[
a
n
,
b
n
]
}
\left\{\left[a_{n}, b_{n}\right]\right\}
{[an,bn]} 是区间套,
且其中每一个闭区间都不能用
H
H
H 中有限个开区间来覆盖.
由区间套定理, 存在唯一的一点
ξ
∈
[
a
n
,
b
n
]
,
n
=
1
,
2
,
⋯
\xi \in\left[a_{n}, b_{n}\right], n=1,2, \cdots
ξ∈[an,bn],n=1,2,⋯. 由于
H
H
H 是
[
a
,
b
]
[a, b]
[a,b]
的一个开覆盖, 故存在开区间
(
α
,
β
)
∈
H
(\alpha, \beta) \in H
(α,β)∈H, 使
ξ
∈
(
α
,
β
)
\xi \in(\alpha, \beta)
ξ∈(α,β).于是, 由定理 7.1 推论, 当
n
n
n 充分大时, 有
[
a
n
,
b
n
]
⊂
(
α
,
β
)
.
\left[a_{n}, b_{n}\right] \subset(\alpha, \beta) .
[an,bn]⊂(α,β).
这表明
[
a
n
,
b
n
]
\left[a_{n}, b_{n}\right]
[an,bn] 只需用
H
H
H 中的一个开区间
(
α
,
β
)
(\alpha, \beta)
(α,β) 就能覆盖, 与挑选
[
a
n
,
b
n
]
\left[a_{n}, b_{n}\right]
[an,bn] 时的假设
“不能用
H
H
H 中有限个开区间来覆盖” 相矛盾. 从而证得必存在属于
H
H
H
的有限个开区间能復盖
[
a
,
b
]
[a, b]
[a,b].
注 定理 7.3 的结论只对闭区间
[
a
,
b
]
[a, b]
[a,b]
成立,而对开区间则不一定成立.例如,开区间集合
{
(
1
n
+
1
,
1
)
}
(
n
=
1
,
2
,
⋯
)
\left\{\left(\frac{1}{n+1}, 1\right)\right\}(n=1,2, \cdots)
{(n+11,1)}(n=1,2,⋯)
构成了开区间
(
0
,
1
)
(0,1)
(0,1) 的一个开覆盖,但不能从中选出有限个开区间盖住
(
0
,
1
)
(0,1)
(0,1).
例 2 用有限覆盖定理证明: 闭区间上连续函数的有界性定理.
证 设
f
(
x
)
f(x)
f(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上连续. 根据连续函数的局部有界性定理,
对于任意的III 第七章 实数的完备性
x
0
∈
[
a
,
b
]
x_{0} \in[a, b]
x0∈[a,b], 存在正数
M
x
0
M_{x_{0}}
Mx0 以及正数
δ
x
0
\delta_{x_{0}}
δx0, 当
x
∈
(
x
0
−
δ
x
0
,
x
0
+
δ
x
0
)
∩
[
a
,
b
]
x \in\left(x_{0}-\delta_{x_{0}}, x_{0}+\delta_{x_{0}}\right) \cap[a, b]
x∈(x0−δx0,x0+δx0)∩[a,b]
时有
∣
f
(
x
)
∣
⩽
|f(x)| \leqslant
∣f(x)∣⩽
M
x
0
M_{x_{0}}
Mx0. 作开区间集
H
=
{
(
x
−
δ
x
,
x
+
δ
x
)
∣
∣
f
(
x
)
∣
⩽
M
x
,
x
∈
[
a
,
b
]
,
x
∈
(
x
−
δ
x
,
x
+
δ
x
)
∩
[
a
,
b
]
}
,
H=\left\{\left(x-\delta_{x}, x+\delta_{x}\right)|| f(x) \mid \leqslant M_{x}, x \in[a, b], x \in\left(x-\delta_{x}, x+\delta_{x}\right) \cap[a, b]\right\},
H={(x−δx,x+δx)∣∣f(x)∣⩽Mx,x∈[a,b],x∈(x−δx,x+δx)∩[a,b]},
显然
H
H
H 覆盖了区间
[
a
,
b
]
[a, b]
[a,b]. 根据有限覆盖定理, 存在
H
H
H 中有限个开区间
(
x
1
−
δ
x
1
,
x
1
+
δ
x
1
)
,
(
x
2
−
δ
x
2
,
x
2
+
δ
x
2
)
,
⋯
,
(
x
n
−
δ
x
n
,
x
n
+
δ
x
n
)
,
\left(x_{1}-\delta_{x_{1}}, x_{1}+\delta_{x_{1}}\right),\left(x_{2}-\delta_{x_{2}}, x_{2}+\delta_{x_{2}}\right), \cdots,\left(x_{n}-\delta_{x_{n}}, x_{n}+\delta_{x_{n}}\right),
(x1−δx1,x1+δx1),(x2−δx2,x2+δx2),⋯,(xn−δxn,xn+δxn),
它们也覆盖了
[
a
,
b
]
[a, b]
[a,b]. 令
M
=
max
{
M
x
1
,
M
x
2
,
⋯
,
M
x
n
}
M=\max \left\{M_{x_{1}}, M_{x_{2}}, \cdots, M_{x_{n}}\right\}
M=max{Mx1,Mx2,⋯,Mxn},
那么对于任意的
x
∈
[
a
,
b
]
x \in[a, b]
x∈[a,b], 存在
k
k
k,
1
⩽
k
⩽
n
1 \leqslant k \leqslant n
1⩽k⩽n,
使得
x
∈
(
x
k
−
δ
x
k
,
x
k
+
δ
x
k
)
x \in\left(x_{k}-\delta_{x_{k}}, x_{k}+\delta_{x_{k}}\right)
x∈(xk−δxk,xk+δxk),
并且有
∣
f
(
x
)
∣
⩽
M
x
k
⩽
M
|f(x)| \leqslant M_{x_{k}} \leqslant M
∣f(x)∣⩽Mxk⩽M.
⋅
\cdot
⋅三、实数完备性基本定理之间的等价性
至此, 我们已经介绍了有关实数完备性的六个基本定理, 即
1. 确界原理 (定理 1.1 );
2. 单调有界定理(定理 2.9);
3. 区间套定理(定理 7.1);
4. 有限覆盖定理 (定理 7.3);
5. 聚点定理 (定理 7.2) 和致密性定理(定理 2.10);
6. 柯西收敛准则 (定理 2.11).
在本书中,我们首先证明了确界原理,由它证明了单调有界定理,再用单调有界定理导出区间套定理,最后用区间套定理分别证明余下的三个定理.
事实上,在实数系中这六个命题是相互等价的,即从其中任何一个命题都可推出其余的五个命题.
对此,我们可按下列顺序给予证明:
1
⇒
2
⇒
3
⇒
4
⇒
5
⇒
6
⇒
1
.
1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6 \Rightarrow 1 \text {. }
1⇒2⇒3⇒4⇒5⇒6⇒1.
其中
1
⇒
2
,
2
⇒
3
1 \Rightarrow 2,2 \Rightarrow 3
1⇒2,2⇒3 与
3
⇒
4
3 \Rightarrow 4
3⇒4 分别见定理
2.9
,
7.1
2.9,7.1
2.9,7.1 与
7.3
;
4
⇒
5
7.3 ; 4 \Rightarrow 5
7.3;4⇒5 和
5
⇒
6
5 \Rightarrow 6
5⇒6
请读者作为练习自证 (见本节习题 8 和 9 ); 而
6
⇒
1
6 \Rightarrow 1
6⇒1 见下例.
例 3 用数列的柯西收敛准则证明确界原理.
证 设
S
S
S 为非空有上界数集. 由实数的阿基米德性,对任何正数
α
\alpha
α,
存在整数
k
a
k_{a}
ka, 使得
λ
α
=
k
α
α
\lambda_{\alpha}=k_{\alpha} \alpha
λα=kαα 为
S
S
S
的上界, 而
λ
α
−
α
=
(
k
α
−
1
)
α
\lambda_{\alpha}-\alpha=\left(k_{\alpha}-1\right) \alpha
λα−α=(kα−1)α
不是
S
S
S 的上界, 即存在
α
′
∈
S
\alpha^{\prime} \in S
α′∈S, 使得
α
′
>
\alpha^{\prime}>
α′>
(
k
α
−
1
)
α
\left(k_{\alpha}-1\right) \alpha
(kα−1)α.
分别取
α
=
1
n
,
n
=
1
,
2
,
⋯
\alpha=\frac{1}{n}, n=1,2, \cdots
α=n1,n=1,2,⋯, 则对每一个正整数
n
n
n,
存在相应的
λ
n
\lambda_{n}
λn, 使得
λ
n
\lambda_{n}
λn 为
S
S
S 的上界,而
λ
n
−
1
n
\lambda_{n}-\frac{1}{n}
λn−n1 不是
S
S
S 的上界,故存在
a
′
∈
S
a^{\prime} \in S
a′∈S,
使得
a
′
>
λ
n
−
1
n
.
a^{\prime}>\lambda_{n}-\frac{1}{n} .
a′>λn−n1.
又对正整数
m
,
λ
m
m, \lambda_{m}
m,λm 是
S
S
S 的上界, 故有
λ
m
⩾
a
′
\lambda_{m} \geqslant a^{\prime}
λm⩾a′. 结合 (6) 式得
λ
n
−
λ
m
<
1
n
\lambda_{n}-\lambda_{m}<\frac{1}{n}
λn−λm<n1; 同理有
λ
m
−
λ
n
<
\lambda_{m}-\lambda_{n}<
λm−λn<
1
m
\frac{1}{m}
m1. 从而得
∣
λ
m
−
λ
n
∣
<
max
{
1
m
,
1
n
}
.
\left|\lambda_{m}-\lambda_{n}\right|<\max \left\{\frac{1}{m}, \frac{1}{n}\right\} .
∣λm−λn∣<max{m1,n1}.
于是, 对任给的
ε
>
0
\varepsilon>0
ε>0, 存在
N
>
0
N>0
N>0, 使得当
m
,
n
>
N
m, n>N
m,n>N 时, 有
∣
λ
m
−
λ
n
∣
<
ε
.
\left|\lambda_{m}-\lambda_{n}\right|<\varepsilon .
∣λm−λn∣<ε.
由柯西收敛准则,数列
{
λ
n
}
\left\{\lambda_{n}\right\}
{λn} 收敛. 记
lim
n
→
∞
λ
n
=
λ
\lim \limits_{n \rightarrow \infty} \lambda_{n}=\lambda
n→∞limλn=λ
现在证明
λ
\lambda
λ 就是
S
S
S 的上确界.首先,对任何
a
∈
S
a \in S
a∈S 和正整数
n
n
n,
有
a
⩽
λ
n
a \leqslant \lambda_{n}
a⩽λn, 由 (7)式得
a
⩽
λ
a \leqslant \lambda
a⩽λ, 即
λ
\lambda
λ 是
S
S
S 的一个上界. 其次, 对任何
δ
>
0
\delta>0
δ>0, 由
1
n
→
0
(
n
→
∞
)
\frac{1}{n} \rightarrow 0(n \rightarrow \infty)
n1→0(n→∞) 及 (7) 式, 对充分大的
n
n
n, 同时有
1
n
<
δ
2
,
λ
n
>
λ
−
δ
2
.
\frac{1}{n}<\frac{\delta}{2}, \lambda_{n}>\lambda-\frac{\delta}{2} .
n1<2δ,λn>λ−2δ.
又因
λ
n
−
1
n
\lambda_{n}-\frac{1}{n}
λn−n1 不是
S
S
S 的上界, 故存在
a
′
∈
S
a^{\prime} \in S
a′∈S, 使得
a
′
>
λ
n
−
1
n
a^{\prime}>\lambda_{n}-\frac{1}{n}
a′>λn−n1.
结合上式得
a
′
>
λ
−
δ
2
−
δ
2
=
λ
−
δ
.
a^{\prime}>\lambda-\frac{\delta}{2}-\frac{\delta}{2}=\lambda-\delta \text {. }
a′>λ−2δ−2δ=λ−δ.
这说明
λ
\lambda
λ 为
S
S
S 的上确界.
同理可证:若
S
S
S 为非空有下界数集,则必存在下确界.
题 7.1
1. 证明数集
{
(
−
1
)
n
+
1
n
}
\left\{(-1)^{n}+\frac{1}{n}\right\}
{(−1)n+n1} 有且只有两个聚点
ξ
1
=
−
1
\xi_{1}=-1
ξ1=−1 和
ξ
2
=
1
\xi_{2}=1
ξ2=1.
2. 证明: 任何有限数集都没有聚点.
3. 设
{
(
a
n
,
b
n
)
}
\left\{\left(a_{n}, b_{n}\right)\right\}
{(an,bn)} 是一个严格开区间套,
即满足
a
1
<
a
2
<
⋯
<
a
n
<
b
n
<
⋯
<
b
2
<
b
1
,
a_{1}<a_{2}<\cdots<a_{n}<b_{n}<\cdots<b_{2}<b_{1},
a1<a2<⋯<an<bn<⋯<b2<b1,
且
lim
n
→
∞
(
b
n
−
a
n
)
=
0
\lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0
n→∞lim(bn−an)=0.
证明: 存在唯一的一点
ξ
\xi
ξ, 使得
a
n
<
ξ
<
b
n
,
n
=
1
,
2
,
⋯
.
a_{n}<\xi<b_{n}, n=1,2, \cdots \text {. }
an<ξ<bn,n=1,2,⋯.
4. 试举例说明: 在有理数集上,
确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.
5. 设
H
=
{
(
1
n
+
2
,
1
n
)
∣
n
=
1
,
2
,
⋯
}
H=\left\{\left.\left(\frac{1}{n+2}, \frac{1}{n}\right) \right\rvert\, n=1,2, \cdots\right\}
H={(n+21,n1)
n=1,2,⋯}.
问
(1)
H
H
H 能否覆盖
(
0
,
1
)
(0,1)
(0,1) ?
(2) 能否从
H
H
H 中选出有限个开区间覆盖 (i)
(
0
,
1
2
)
\left(0, \frac{1}{2}\right)
(0,21), (ii)
(
1
100
,
1
)
\left(\frac{1}{100}, 1\right)
(1001,1) ?
6. 证明: 闭区间
[
a
,
b
]
[a, b]
[a,b] 的全体聚点的集合是
[
a
,
b
]
[a, b]
[a,b] 本身.
7. 设
{
x
n
}
\left\{x_{n}\right\}
{xn} 为单调数列. 证明: 若
{
x
n
}
\left\{x_{n}\right\}
{xn} 存在聚点, 则必是唯一的, 且为
{
x
n
}
\left\{x_{n}\right\}
{xn} 的确界.
8. 试用有限覆盖定理证明聚点定理.
9. 试用聚点定理证明柯西收敛准则.
10. 用有限覆盖定理证明根的存在性定理.
11. 用有限覆盖定理证明连续函数的一致连续性定理.
§ 2 上极限和下极限
定义 1 若数
a
a
a 的任一邻域含有数列
{
x
n
}
\left\{x_{n}\right\}
{xn}
中的无限多个项, 则称
a
a
a 为数列
{
x
n
}
\left\{x_{n}\right\}
{xn} 的一个聚点(1).
例如, 数列
{
(
−
1
)
n
n
n
+
1
}
\left\{(-1)^{n} \frac{n}{n+1}\right\}
{(−1)nn+1n} 有聚点 -1 与 1 ; 数列
{
sin
n
π
4
}
\left\{\sin \frac{n \pi}{4}\right\}
{sin4nπ} 有
−
1
,
−
2
2
,
0
,
2
2
-1,-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}
−1,−22,0,22 和 1 五个聚点; 数列
{
1
n
}
\left\{\frac{1}{n}\right\}
{n1} 只有一个聚点 0 ; 常数列
{
1
,
1
,
⋯
,
1
,
⋯
}
\{1,1, \cdots, 1, \cdots\}
{1,1,⋯,1,⋯} 只有一个聚点 1.
注 点列(或数列) 的聚点定义与上一节中关于点集(或数集)
的聚点定义是有区别的. 当把点列看作点集时, 点列中对应于相同数值的项,
只能作为一个点来看待. 如上述点列
{
sin
n
π
4
}
\left\{\sin \frac{n \pi}{4}\right\}
{sin4nπ}
作为点集来看待时, 它仅含有五个点, 即
{
sin
n
π
4
}
=
{
−
1
,
−
2
2
,
0
,
2
2
,
1
}
,
\left\{\sin \frac{n \pi}{4}\right\}=\left\{-1,-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}, 1\right\},
{sin4nπ}={−1,−22,0,22,1},
按点集聚点的定义,这个有限集没有聚点.然而,我们在点列聚点的定义中只考虑项,只要在一点的任意小邻域内聚集了无穷多个项
(不论其数值是否相同), 该点就称为点列的聚点. 所以,
点列的聚点实际上就是其收玫子列的极限.
定理 7.4 有界点列 (数列)
{
x
n
}
\left\{x_{n}\right\}
{xn} 至少有一个聚点,
且存在最大聚点与最小聚点.
证 关于
{
x
n
}
\left\{x_{n}\right\}
{xn} 聚点存在性的证明, 完全类似于定理 7.2
的证明方法, 只需把那个证明中的"无限多个点"改为"无限多个项"即可.
至于最大聚点的存在性,只需在定理 7.2 的证明过程中,当每次把区间
[
a
k
−
1
,
b
k
−
1
]
\left[a_{k-1}, b_{k-1}\right]
[ak−1,bk−1]等分为两个子区间时, 若右边一个含有
{
x
n
}
\left\{x_{n}\right\}
{xn} 中无穷多个项, 则取它为
[
a
k
,
b
k
]
\left[a_{k}, b_{k}\right]
[ak,bk], 否则取左边的子区间为
[
a
k
,
b
k
]
\left[a_{k}, b_{k}\right]
[ak,bk]. 这样的选取方法既保证了每次选出的
[
a
k
,
b
k
]
\left[a_{k}, b_{k}\right]
[ak,bk] 都含有
{
x
n
∣
\left\{x_{n} \mid\right.
{xn∣
中无限多个项, 同时在
[
a
k
,
b
k
]
\left[a_{k}, b_{k}\right]
[ak,bk] 的右边却至多只有
{
x
n
}
\left\{x_{n}\right\}
{xn} 的有限个项, 于是由区间套
{
[
a
k
,
b
k
]
}
\left\{\left[a_{k}, b_{k}\right]\right\}
{[ak,bk]} 所确定的点列
{
x
n
}
\left\{x_{n}\right\}
{xn} 的聚点
ξ
\xi
ξ 必是
{
x
n
}
\left\{x_{n}\right\}
{xn}
的最大聚点. 因若不然, 设另有
{
x
n
}
\left\{x_{n}\right\}
{xn} 的聚点
ζ
>
ξ
\zeta>\xi
ζ>ξ,
则令
δ
=
1
3
(
ζ
−
ξ
)
>
0
\delta=\frac{1}{3}(\zeta-\xi)>0
δ=31(ζ−ξ)>0, 在
U
(
ζ
;
δ
)
U(\zeta ; \delta)
U(ζ;δ) 内含有
{
x
n
}
\left\{x_{n}\right\}
{xn} 中无限多个项. 但当
n
n
n 充分大时,
U
(
ζ
,
δ
)
U(\zeta, \delta)
U(ζ,δ) 将完全落在
[
a
n
,
b
n
]
\left[a_{n}, b_{n}\right]
[an,bn] 的右边,
这与区间列
{
[
a
k
,
b
k
]
}
\left\{\left[a_{k}, b_{k}\right]\right\}
{[ak,bk]}
的上述选取方法相矛盾. 所以
ξ
\xi
ξ 必为
{
x
n
}
\left\{x_{n}\right\}
{xn} 的最大聚点.
类似地,只要把每次优先挑选右边一个子区间改为优先挑选左边一个,就能证得最小聚点的存在性.
定义 2 有界数列 (点列)
{
x
n
}
\left\{x_{n}\right\}
{xn} 的最大聚点
A
ˉ
\bar{A}
Aˉ
与最小聚点
A
‾
\underline{A}
A 分别称为
{
x
n
}
\left\{x_{n}\right\}
{xn}
的上极限与下极限, 记作
(1) 本节中同前面一样, 不区分实数与数轴上的点,
因此点列的聚点等同于数列的聚点. 数列或点列的聚点也称为极限点.
A
ˉ
=
lim
n
→
∞
x
n
,
A
‾
=
lim
n
→
∞
lim
x
n
.
\bar{A}=\lim \limits_{n \rightarrow \infty} x_{n}, \quad \underline{A}=\lim \limits_{n \rightarrow \infty}^{\lim } x_{n} .
Aˉ=n→∞limxn,A=n→∞limlimxn.
由定理 7.4 立刻可得: 任何有界数列必存在上、下极限.
例 1
lim
n
→
∞
(
−
1
)
n
n
n
+
1
=
1
,
lim
n
→
∞
(
−
1
)
n
n
n
+
1
=
−
1
;
lim
n
→
∞
sin
n
π
4
=
1
,
lim
n
→
∞
sin
n
π
4
=
−
1
;
lim
n
→
∞
1
n
=
lim
n
→
∞
lim
1
n
=
0.
\begin{array}{c} \lim \limits_{n \rightarrow \infty}(-1)^{n} \frac{n}{n+1}=1, \lim \limits_{n \rightarrow \infty}(-1)^{n} \frac{n}{n+1}=-1 ; \\ \lim \limits_{n \rightarrow \infty} \sin \frac{n \pi}{4}=1, \lim \limits_{n \rightarrow \infty} \sin \frac{n \pi}{4}=-1 ; \\ \lim \limits_{n \rightarrow \infty} \frac{1}{n}=\lim \limits_{n \rightarrow \infty}^{\lim } \frac{1}{n}=0 . \end{array}
n→∞lim(−1)nn+1n=1,n→∞lim(−1)nn+1n=−1;n→∞limsin4nπ=1,n→∞limsin4nπ=−1;n→∞limn1=n→∞limlimn1=0.
定理 7.5 对任何有界数列
{
x
n
}
\left\{x_{n}\right\}
{xn}, 有
lim
n
→
∞
x
n
⩽
lim
‾
n
→
∞
x
n
.
\lim \limits_{n \rightarrow \infty} x_{n} \leqslant \overline{\lim }_{n \rightarrow \infty} x_{n} .
n→∞limxn⩽limn→∞xn.
定理
7.6
lim
n
→
∞
x
n
=
A
7.6 \lim \limits_{n \rightarrow \infty} x_{n}=A
7.6n→∞limxn=A 的充要条件是
lim
n
→
∞
x
n
=
lim
n
→
∞
x
n
=
A
\lim \limits_{n \rightarrow \infty} x_{n}=\lim \limits_{n \rightarrow \infty} x_{n}=A
n→∞limxn=n→∞limxn=A.
以上两个定理的证明由定理 7.4 与定义 2 立即可得.
定理 7.7 设
{
x
n
}
\left\{x_{n}\right\}
{xn} 为有界数列.
(1)
A
ˉ
\bar{A}
Aˉ 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 上极限的充要条件是: 任给
ε
>
0
\varepsilon>0
ε>0,
(i) 存在
N
>
0
N>0
N>0, 使得当
n
>
N
n>N
n>N 时, 有
x
n
<
A
ˉ
+
ε
x_{n}<\bar{A}+\varepsilon
xn<Aˉ+ε;
(ii) 存在子列
{
x
n
t
}
,
x
n
4
>
A
ˉ
−
ε
,
k
=
1
,
2
,
⋯
\left\{x_{n_{t}}\right\}, x_{n_{4}}>\bar{A}-\varepsilon, k=1,2, \cdots
{xnt},xn4>Aˉ−ε,k=1,2,⋯.
(2)
A
A
A 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 下极限的充要条件是: 任给
ε
>
0
\varepsilon>0
ε>0,
(i) 存在
N
>
0
N>0
N>0, 使得当
n
>
N
n>N
n>N 时, 有
x
n
>
A
−
ε
x_{n}>A-\varepsilon
xn>A−ε;
(ii) 存在子列
{
x
n
k
}
,
x
n
k
<
A
‾
+
ε
,
k
=
1
,
2
,
⋯
\left\{x_{n_{k}}\right\}, x_{n_{k}}<\underline{A}+\varepsilon, k=1,2, \cdots
{xnk},xnk<A+ε,k=1,2,⋯.
证 (1) 必要性 因
A
ˉ
\bar{A}
Aˉ 是
{
x
n
}
\left\{x_{n}\right\}
{xn} 的聚点, 故对任给的
ε
>
0
,
U
(
A
ˉ
;
ε
)
\varepsilon>0, U(\bar{A} ; \varepsilon)
ε>0,U(Aˉ;ε) 含有
{
x
n
}
\left\{x_{n}\right\}
{xn}
中无穷多项, 设为
{
x
n
k
}
\left\{x_{n_{k}}\right\}
{xnk}, 则有
x
n
k
>
A
ˉ
−
ε
,
k
=
1
,
2
,
⋯
x_{n_{k}}>\bar{A}-\varepsilon, k=1,2, \cdots
xnk>Aˉ−ε,k=1,2,⋯.
又因
A
ˉ
\bar{A}
Aˉ 是
{
x
n
}
\left\{x_{n}\right\}
{xn} 的最大聚点, 故在
A
ˉ
+
ε
\bar{A}+\varepsilon
Aˉ+ε 的右边至多只有
{
x
n
}
\left\{x_{n}\right\}
{xn} 的有限个项,
设此有限项的最大下标为
N
N
N, 则当
n
>
N
n>N
n>N 时, 有
x
n
<
A
ˉ
+
ε
x_{n}<\bar{A}+\varepsilon
xn<Aˉ+ε.
充分性 任给
ε
>
0
\varepsilon>0
ε>0, 由条件 (i) 和 (ii) 易见,
U
(
A
ˉ
;
ε
)
U(\bar{A} ; \varepsilon)
U(Aˉ;ε) 含有
{
x
n
}
\left\{x_{n}\right\}
{xn} 中无穷多个项, 故
A
ˉ
\bar{A}
Aˉ是
{
x
n
}
\left\{x_{n}\right\}
{xn} 的一个聚点.
又设
α
>
A
ˉ
\alpha>\bar{A}
α>Aˉ. 记
ε
=
1
2
(
α
−
A
ˉ
)
\varepsilon=\frac{1}{2}(\alpha-\bar{A})
ε=21(α−Aˉ),
则由条件 (i) 易见
U
(
α
;
ε
)
U(\alpha ; \varepsilon)
U(α;ε) 内至多只有
{
x
n
}
\left\{x_{n}\right\}
{xn} 中有限个项,故
α
\alpha
α 不是
{
x
n
}
\left\{x_{n}\right\}
{xn} 的聚点. 所以
A
ˉ
\bar{A}
Aˉ 是
{
x
n
}
\left\{x_{n}\right\}
{xn}
的最大聚点.
(2) 类似地证明.
定理 7.7 的另一种形式如下:
定理 7.7’ 设
{
x
n
}
\left\{x_{n}\right\}
{xn} 为有界数列.
(1)
A
ˉ
\bar{A}
Aˉ 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 上极限的充要条件是: 对任何
α
>
A
ˉ
,
{
x
n
}
\alpha>\bar{A},\left\{x_{n}\right\}
α>Aˉ,{xn} 中大于
α
\alpha
α
的项至多有限个;对任何
β
<
A
ˉ
,
{
x
n
}
\beta<\bar{A},\left\{x_{n}\right\}
β<Aˉ,{xn} 中大于
β
\beta
β 的项有无限多个.
(2)
A
A
A 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 下极限的充要条件是: 对任何
β
<
A
,
{
x
n
}
\beta<A,\left\{x_{n}\right\}
β<A,{xn} 中小于
β
\beta
β 的项至多有限个;
对任何
α
>
A
‾
,
{
x
n
∣
\alpha>\underline{A},\left\{x_{n} \mid\right.
α>A,{xn∣ 中小于
α
\alpha
α
的项有无限多个.
定理 7.8 (上、下极限的保不等式性) 设有界数列
∣
a
n
∣
,
∣
b
n
∣
\left|a_{n}\right|,\left|b_{n}\right|
∣an∣,∣bn∣ 满足: 存在
N
0
>
0
N_{0}>0
N0>0, 当
n
>
N
0
n>N_{0}
n>N0 时, 有
a
n
⩽
b
n
a_{n} \leqslant b_{n}
an⩽bn, 则
特别地, 若
α
,
β
\alpha, \beta
α,β 为常数, 又存在
N
0
>
0
N_{0}>0
N0>0, 当
n
>
N
0
n>N_{0}
n>N0 时, 有
α
⩽
a
n
⩽
β
\alpha \leqslant a_{n} \leqslant \beta
α⩽an⩽β, 则
α
⩽
lim
n
→
∞
a
n
⩽
lim
‾
n
→
∞
a
n
⩽
β
.
\alpha \leqslant \lim \limits_{n \rightarrow \infty} a_{n} \leqslant \overline{\lim }_{n \rightarrow \infty} a_{n} \leqslant \beta .
α⩽n→∞liman⩽limn→∞an⩽β.
这个定理的证明留给读者.
例 2 设
{
a
n
}
,
{
b
n
}
\left\{a_{n}\right\},\left\{b_{n}\right\}
{an},{bn} 为有界数列. 证明
lim
n
→
∞
(
a
n
+
b
n
)
⩽
lim
n
→
∞
a
n
+
lim
n
→
∞
b
n
.
\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leqslant \lim \limits_{n \rightarrow \infty} a_{n}+\lim \limits_{n \rightarrow \infty} b_{n} .
n→∞lim(an+bn)⩽n→∞liman+n→∞limbn.
特别地, 若
lim
n
→
∞
a
n
\lim \limits_{n \rightarrow \infty} a_{n}
n→∞liman 存在, 则
lim
n
→
∞
(
a
n
+
b
n
)
=
lim
n
→
∞
a
n
+
lim
n
→
∞
b
n
=
lim
n
→
∞
a
n
+
lim
n
→
∞
b
n
.
\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim \limits_{n \rightarrow \infty} a_{n}+\lim \limits_{n \rightarrow \infty} b_{n}=\lim \limits_{n \rightarrow \infty} a_{n}+\lim \limits_{n \rightarrow \infty} b_{n} .
n→∞lim(an+bn)=n→∞liman+n→∞limbn=n→∞liman+n→∞limbn.
证设
lim
n
→
∞
a
n
=
A
,
lim
n
→
∞
b
n
=
B
\lim \limits_{n \rightarrow \infty} a_{n}=A, \lim \limits_{n \rightarrow \infty} b_{n}=B
n→∞liman=A,n→∞limbn=B.
由定理 7.7, 对任给的
ε
>
0
\varepsilon>0
ε>0, 存在
N
>
0
N>0
N>0, 当
n
>
N
n>N
n>N 时, 有
a
n
<
A
+
ε
2
,
b
n
<
B
+
ε
2
⇒
a
n
+
b
n
<
A
+
B
+
ε
.
a_{n}<A+\frac{\varepsilon}{2}, b_{n}<B+\frac{\varepsilon}{2} \Rightarrow a_{n}+b_{n}<A+B+\varepsilon .
an<A+2ε,bn<B+2ε⇒an+bn<A+B+ε.
再利用上极限的保不等式性 (定理 7.8 ) 得
lim
n
→
∞
(
a
n
+
b
n
)
⩽
A
+
B
+
ε
.
\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leqslant A+B+\varepsilon .
n→∞lim(an+bn)⩽A+B+ε.
故由
ε
\varepsilon
ε 的任意性得
lim
n
→
∞
(
a
n
+
b
n
)
⩽
A
+
B
\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leqslant A+B
n→∞lim(an+bn)⩽A+B,
即 (1) 式成立.
若
lim
n
→
∞
a
n
=
lim
n
→
∞
a
n
=
A
\lim \limits_{n \rightarrow \infty} a_{n}=\lim \limits_{n \rightarrow \infty} a_{n}=A
n→∞liman=n→∞liman=A
(即极限存在), 由 (1) 式得
lim
n
→
∞
b
n
=
lim
n
→
∞
[
(
a
n
+
b
n
)
−
a
n
]
⩽
lim
n
→
∞
(
a
n
+
b
n
)
+
lim
n
→
∞
(
−
a
n
)
=
lim
n
→
∞
(
a
n
+
b
n
)
−
A
.
\begin{aligned} \lim \limits_{n \rightarrow \infty} b_{n} & =\lim \limits_{n \rightarrow \infty}\left[\left(a_{n}+b_{n}\right)-a_{n}\right] \leqslant \lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right)+\lim \limits_{n \rightarrow \infty}\left(-a_{n}\right) \\ & =\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right)-A . \end{aligned}
n→∞limbn=n→∞lim[(an+bn)−an]⩽n→∞lim(an+bn)+n→∞lim(−an)=n→∞lim(an+bn)−A.
故
lim
n
→
∞
(
a
n
+
b
n
)
⩾
lim
n
→
∞
a
n
+
lim
n
→
∞
b
n
,
\lim \limits_{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \geqslant \lim \limits_{n \rightarrow \infty} a_{n}+\lim \limits_{n \rightarrow \infty} b_{n},
n→∞lim(an+bn)⩾n→∞liman+n→∞limbn,
结合 (1) 式可知 (2) 式成立.
注 (1) 式有可能成立严格的不等式. 例如, 设
a
n
=
(
−
1
)
n
,
b
n
=
(
−
1
)
n
+
1
a_{n}=(-1)^{n}, b_{n}=(-1)^{n+1}
an=(−1)n,bn=(−1)n+1, 则易见 (1)式左边等于 0 , 右边等于 2
.
定理 7.9 设
{
x
n
}
\left\{x_{n}\right\}
{xn} 为有界数列.
(1)
A
ˉ
\bar{A}
Aˉ 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 上极限的充要条件是
A
ˉ
=
lim
n
→
∞
sup
k
⩾
n
{
x
k
}
;
\bar{A}=\lim \limits_{n \rightarrow \infty} \sup _{k \geqslant n}\left\{x_{k}\right\} ;
Aˉ=n→∞limk⩾nsup{xk};
(2)
A
A
A 为
{
x
n
}
\left\{x_{n}\right\}
{xn} 下极限的充要条件是
A
‾
=
lim
n
→
∞
inf
k
⩾
n
{
x
k
}
.
\underline{A}=\lim \limits_{n \rightarrow \infty} \inf _{k \geqslant n}\left\{x_{k}\right\} .
A=n→∞limk⩾ninf{xk}.
做过第二章
§
3
§ 3
§3 习题 12 的读者, 对这个定理应该不会感到陌生,
并能自行写出其证明. 有些教科书上也用 (3)、(4) 分别作为有界数列
{
x
n
}
\left\{x_{n}\right\}
{xn} 上、下极限的定义.
若定义 1 中的
a
a
a 可允许是非正常点
+
∞
+\infty
+∞ 或
−
∞
-\infty
−∞, 则定理 7.4
可相应地扩充为: 任一
点列
{
x
n
∣
\left\{x_{n} \mid\right.
{xn∣ 至少有一个聚点,
且存在最大聚点与最小聚点.
不难证明: 无上 (下) 界点列的最大 (小) 聚点为
+
∞
(
−
∞
)
+\infty(-\infty)
+∞(−∞). 于是,
无上 (下) 界点列有非正常上 (下) 极限
+
∞
(
−
∞
)
+\infty(-\infty)
+∞(−∞). 例如,
lim
n
→
∞
[
(
−
1
)
n
+
1
]
n
=
+
∞
,
lim
‾
‾
[
(
−
1
)
n
+
1
]
n
=
0
;
lim
‾
n
→
∞
(
−
1
)
n
n
=
+
∞
,
lim
n
→
∞
(
−
1
)
n
n
=
−
∞
.
\begin{array}{c} \lim \limits_{n \rightarrow \infty}\left[(-1)^{n}+1\right] n=+\infty, \quad \underline{\underline{\lim }}\left[(-1)^{n}+1\right] n=0 ; \\ \overline{\lim }_{n \rightarrow \infty}(-1)^{n} n=+\infty, \lim \limits_{n \rightarrow \infty}(-1)^{n} n=-\infty . \end{array}
n→∞lim[(−1)n+1]n=+∞,lim[(−1)n+1]n=0;limn→∞(−1)nn=+∞,n→∞lim(−1)nn=−∞.
注 对于非正常上、下极限, 上述定理 7.5 至 7.9 也成立 (其中定理 7.7
应作相应地修改. 例如,
lim
n
→
∞
x
n
=
+
∞
\lim \limits_{n \rightarrow \infty} x_{n}=+\infty
n→∞limxn=+∞ 的充要条件是
题 7.2
1. 求以下数列的上、下极限:
(1)
{
1
+
(
−
1
)
∗
}
\left\{1+(-1)^{*}\right\}
{1+(−1)∗} :
(2)
{
(
−
1
)
n
n
2
n
+
1
}
\left\{(-1)^{n} \frac{n}{2 n+1}\right\}
{(−1)n2n+1n};
(3)
{
2
n
+
1
}
\{2 n+1\}
{2n+1};
(4)
{
2
n
n
+
1
sin
n
π
4
}
\left\{\frac{2 n}{n+1} \sin \frac{n \pi}{4}\right\}
{n+12nsin4nπ}
(5)
{
n
2
+
1
n
sin
π
n
}
\left\{\frac{n^{2}+1}{n} \sin \frac{\pi}{n}\right\}
{nn2+1sinnπ};
(6)
{
∣
cos
n
π
3
∣
n
}
\left\{\sqrt[n]{\left|\cos \frac{n \pi}{3}\right|}\right\}
{n
cos3nπ
}.
2. 设
{
a
n
}
,
{
b
n
}
\left\{a_{n}\right\},\left\{b_{n}\right\}
{an},{bn} 为有界数列, 证明:
(1)
lim
‾
a
n
‾
=
−
lim
n
→
∞
(
−
a
n
)
\underline{\underline{\lim } a_{n}}=-\lim \limits_{n \rightarrow \infty}\left(-a_{n}\right)
liman=−n→∞lim(−an);
(2)
lim
‾
n
→
∞
a
n
+
lim
‾
n
→
∞
b
n
⩽
lim
‾
n
→
∞
(
a
n
+
b
n
)
\underline{\lim }_{n \rightarrow \infty} a_{n}+\underline{\lim }_{n \rightarrow \infty} b_{n} \leqslant \underline{\lim }_{n \rightarrow \infty}\left(a_{n}+b_{n}\right)
limn→∞an+limn→∞bn⩽limn→∞(an+bn)
:
(3) 若
a
n
>
0
,
b
n
>
0
(
n
=
1
,
2
,
⋯
)
a_{n}>0, b_{n}>0(n=1,2, \cdots)
an>0,bn>0(n=1,2,⋯), 则
(4) 若
a
n
>
0
,
lim
n
→
∞
a
n
>
0
a_{n}>0, \underset{n \rightarrow \infty}{\lim } a_{n}>0
an>0,n→∞liman>0, 则
lim
n
→
∞
1
a
n
=
1
lim
a
n
‾
.
\lim \limits_{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{\underline{\lim a_{n}}} .
n→∞liman1=liman1.
3. 证明: 若
{
a
n
∣
\left\{a_{n} \mid\right.
{an∣ 为递增数列, 则
lim
n
→
∞
a
n
=
lim
a
n
\lim \limits_{n \rightarrow \infty} a_{n}=\lim a_{n}
n→∞liman=liman.
4. 证明: 若
a
n
>
0
(
n
=
1
,
2
,
⋯
)
a_{n}>0(n=1,2, \cdots)
an>0(n=1,2,⋯) 且
lim
n
→
∞
a
n
⋅
lim
n
→
∞
1
a
n
=
1
\lim \limits_{n \rightarrow \infty} a_{n} \cdot \lim \limits_{n \rightarrow \infty} \frac{1}{a_{n}}=1
n→∞liman⋅n→∞liman1=1,
则数列
{
a
n
}
\left\{a_{n}\right\}
{an} 收敛.
5. 证明定理 7.8.
6. 证明定理 7.9.
第七章总练习题
1. 设
E
′
E^{\prime}
E′ 是集合
E
E
E 的全体聚点所成的点集,
x
0
x_{0}
x0 是
E
′
E^{\prime}
E′ 的一个聚点. 试证:
x
0
∈
E
′
x_{0} \in E^{\prime}
x0∈E′.第七章
实数的完备性
2. 用确界原理证明有限复盖定理.
3. 设
lim
n
→
∞
x
n
=
A
<
B
=
lim
⋯
x
n
,
lim
n
→
∞
(
x
n
+
1
−
x
n
)
=
0
\lim \limits_{n \rightarrow \infty} x_{n}=A<B=\lim \limits_{\cdots} x_{n}, \lim \limits_{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0
n→∞limxn=A<B=⋯limxn,n→∞lim(xn+1−xn)=0.
试证:数列
∣
x
n
∣
\left|x_{n}\right|
∣xn∣ 的聚点全体恰为闭区间
[
A
,
B
]
[A, B]
[A,B].
第七章综合自测题第八章