《用好数据分析方法挖掘数据意义形成业务洞察——上篇》介绍了在业务流程中常用的五种数据分析方法:对比分析、多维度拆解、漏斗分析、分布分析和用户留存分析;本文将继续介绍:用户画像、归因查找、路径挖掘和行为序列。
一,用户画像
用户画像通过标识和标签将用户分成不同群体,以便对不同群体进行差异化的产品和运营操作,以便提高产品和服务的质量和用户体验,是企业数据驱动的产品运营策略的重要组成部分。
标签一般可以分为四类:
-
1. 基础属性:年龄、性别、生日、星座、教育、身高、收入、职业…
-
2. 社会关系:婚姻、有无小孩、有无女孩、家有老人…
-
3. 行为特征:买过优惠商品、曾获优秀学员…
-
4. 业务相关:日均8000步、体脂率、收藏了100+健身计划、高矮胖瘦…
有了用户画像后,即了解数据背后的用户后,我们可以实现:
-
高质量拉新:从现有用户中找到“真正的用户”,然后用这些用户的特征集合,最后按此特征找到类似的新用户。
-
精准运营推送:运营资源是有限的,尽量提升运营资源的ROI,尽量让推送内容与用户有关。
-
辅助产品设计:用户画像和行为序列等工具,在拟真的环境中验证产品设计方案的合理性,避免个人经验局限性导致的产品决策错误。
二,归因查找
归因查找可以用于找出事情发生的主要原因(目标完成的核心原因),并了解业务流程中各步骤对最终目标的影响程度。常见的归因模型有末次归因、首次归因和多阶段归因等,适用场景不同。通过选择合适的归因模型,可以分析用户行为、发现关键节点和用户需求,为运营策略提供有力支持。
归因查找通常用于统计各业务模块的贡献和找到业务的爆发点:
-
将目标的达成拆分到各个模块,方便统计各模块的贡献;
-
获悉当前指标达成的主要隐私,获得如何提升业务指标的洞见。
三,路径挖掘
通过分析用户行为路径,包括从起点到结果目标的分析,深入挖掘用户动机。在大部分分析工具中,都提供用户行为路径的分析工具。
路径挖掘适合有明确的起始点或者有明确的结果目标的场景。
-
有明确起始点:希望观察用户在起点之后发生了什么;
-
有明确结果目标:希望观察用户是如何达到目标的。
四,行为序列
通过观察单个用户行为序列观察,深入了解用户对产品或服务的兴趣程度、依赖程度、使用频率等,帮助企业判断用户的真实需求和意图,进而优化产品和服务,提高用户转化率和满意度。
例如:A用户通过注册,进入Demo页面,体验目标检测和实例分割两个Demo,然后跳入公司介绍;B用户通过注册,进入Demo页面,长时间反复体验了多个目标检测和实例分割模型,还进行了性能比较。通过行为序列分析,B用户显然是高潜客户,应让销售团队高优跟进。
再者,通过行为序列分析,可以找到来自手机牧场的机刷流量。手机牧场的手机,由于其行为全部由程序控制,其行为序列会高度一致。
五,总结
《用好数据分析方法挖掘数据意义形成业务洞察——上篇》介绍了在业务流程中常用的五种数据分析方法:对比分析、多维度拆解、漏斗分析、分布分析和用户留存分析;本文则介绍了其它四种数据分析方法:用户画像、归因查找、路径挖掘和行为序列。
更好的算力魔方®期待您的意见与建议!