作者:算力魔方创始人/英特尔创新大使刘力
最近,DeepSeek-R1 可是火遍了全网,号称“超越人类专家”,数学竞赛夺冠、代码能力碾压人类开发者……听起来是不是很厉害?但别急着被这些光环迷了眼,这款被吹上天的 AI,其实也有不少能力局限呢。今天,咱们就抛开那些营销滤镜,根据官方论文《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》以及我多年的产品设计经验,来好好聊聊 DeepSeek-R1 的那些“小秘密”!
一,“低情商偏科王”:只会做题,不会“沟通”
DeepSeek-R1 在数学、编程这些“考试型任务”上确实表现惊艳,可一旦到了跟人沟通的场景,那可就翻车翻得一塌糊涂了。DeepSeek 团队自曝:它的训练数据主要集中在学术领域,这就导致它像个“书呆子”,只知道闷头解决问题,却不懂得怎么跟人打交道。
大家都知道,沟通可是一门温暖的艺术,可不是一堆冰冷的技术。就像在咱们日常的管理工作中,都是先处理情绪再处理问题。DeepSeek-R1 这样的“书呆子”,要是用在需要提供情绪价值的产品上,那可就惨了。试想一下,当客户气冲冲地打来投诉电话,你的“智能客服”却跟客户有条不紊地分析问题的根因和解决方法,客户能不气得更厉害吗?
现在很多自媒体都在嘲笑 OpenAI 发布的最新模型 GPT-4.5,说它卷不动数学,开始走高情商路线了。但我反倒觉得,从产品的角度来看,OpenAI 选择的大模型能力发展方向才是正确且极有价值的呢。著名产品人梁宁在《给温度以技术,给商业以文明》的演讲里也提到:下一个时代,比拼的就是情绪价值。DeepSeek-R1 这种“低情商偏科王”,在情绪价值方面可就差得远了。
二,小语种能力不足:除了中文和英文,它可能“胡言乱语”
虽说 DeepSeek-R1 支持多语言,但 DeepSeek 团队也坦白了,它的训练语料里小语种语料少得可怜。小语种,就是除了联合国六大通用语种(汉语、英语、法语、西班牙语、俄语、阿拉伯语)之外的其他语言。要是用小语种让 DeepSeek-R1 去思考数学或者解决推理问题,那可就真要闹笑话了,搞不好就会“胡言乱语”。
那些做小语种国家产品的人可得注意了,可不是像很多自媒体说的那样,把产品接入 DeepSeek-R1 就万事大吉了。比如马来西亚人日常说的马来西亚式英语,那可是一种独特的英语变体,它把马来语、汉语(包括普通话和方言)等语言的语法和词汇都混在了一起,一句话里可能夹杂着普通话、马来语和粤语。要是你直接把接入了 DeepSeek-R1 的产品出口到马来西亚,那面对这种“夹杂英语、普通话、马来语和粤语”的问题,DeepSeek-R1 恐怕就得傻眼了。
三,“玻璃心”:面对有示例的提示词,智商暴跌50%
DeepSeek-R1 对提示词可是很挑剔的!官方明确指出,要是提示词里带有示例,也就是少样本提示词(few-shot prompt),它会先从示例里学习,然后再回答,这样一来,答案的准确率可能就会从 90% 直接掉到 40%。
官方建议:直接用零样本提示词(Zero-shot Prompt),不要加入任何示例。这样一来,DeepSeek-R1 就能发挥出它应有的水平了。
四,职场“菜鸟”:代码写得好,但做工程就是个“实习生”
DeepSeek-R1 在 Codeforces 竞赛里击败了 96% 的人类,这代码能力看起来确实很厉害。可一到真实的软件工程里,它就露馅了:
-
复杂项目管理:它压根儿就不懂“模块化开发”“版本控制”这些概念,面对复杂项目,估计得一头雾水。
-
跨团队协作:DeepSeek-R1 只能独自编程,完全不会团队协作,要是放到一个需要多人协作的项目里,那可就麻烦了。
-
玄学 debug:遇到 bug 时,它可能还会给出“重启试试”这种无厘头的解决方案,这可真是让人哭笑不得。
为啥会出现这种情况呢?原因就在于 DeepSeek-R1 在 RL 训练中缺乏真实工程数据,所以它虽然能解题,但真到了工程项目里,可就不是那么回事儿了,说白了,它就是一个“解题高手”,但不是工程项目高手。
五,结语:AI 的未来,在清醒认知中前行
DeepSeek-R1 的突破确实值得喝彩,但它绝对不是完美的“通用人工智能”。这些能力局限的存在,正好说明了 AI 的“智能”依然是“窄化”的,还远远无法替代人类的综合能力。不过好消息是,DeepSeek 团队已经知道这些局限的存在了,他们已经在着手解决这些问题了。
在这里,我要友情提示大家一句:当你看到“AI 秒杀人类”这种惊悚新闻的时候,可千万别被吓到了,这可能只是特定场景下的“贩卖焦虑”。真正的 AGI 革命,还在路上呢。那么,你有没有发现 DeepSeek-R1 的其他短板呢?欢迎在评论区一起聊聊呀!
如果你有更好的文章,欢迎投稿!
稿件接收邮箱:nami.liu@pasuntech.com
更多精彩内容请关注“算力魔方®”!