上交所股票行情数据API接口

本文介绍了TSanghi财经平台提供的两个股票日线数据API,包括历史日线API用于获取完整历史数据,以及增量日线API获取每日最新行情。详细解释了请求参数、响应参数以及Python示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 历史日线

# Restful API
https://tsanghi.com/api/fin/stock/XSHG/daily?token={token}&ticker={ticker}

默认返回全部历史数据,也可以使用参数start_date和end_date选择特定时间段。

更新时间:收盘后3~4小时。

更新周期:每天。

请求方式:GET。

# 测试:返回不超过10条数据(2年历史)
https://tsanghi.com/api/fin/stock/XSHG/daily?token=demo&ticker=600519&order=2

Request请求参数

参数名称

参数类型

参数选项

参数说明

token

字符串

必选

API Token。登录后获取。

ticker

字符串

必选

股票代码。详见股票清单接口。

start_date

字符串

可选

起始日期。格式“yyyy-mm-dd”,默认:最早日期。

end_date

字符串

可选

终止日期。格式“yyyy-mm-dd”,默认:最新日期。

fmt

字符串

可选

输出格式。支持json和csv两种标准输出格式,默认:json。

columns

字符串

可选

输出字段。支持自定义输出,多个字段以半角逗号分隔,默认:所有字段。

order

整数

可选

按日期排序。0:不排序,1:升序,2:降序,默认:0。

Response响应参数

参数名称

参数类型

参数说明

ticker

字符串

股票代码

date

字符串

日期。格式“yyyy-mm-dd”。

open

小数

开盘价

high

小数

最高价

low

小数

最低价

close

小数

收盘价

volume

小数

成交量

Python示例

import requests

url = f"https://tsanghi.com/api/fin/stock/XSHG/daily?token=demo&ticker=600519"
data = requests.get(url).json()
print(data)

Response示例

2. 增量日线

# Restful API
https://tsanghi.com/api/fin/stock/XSHG/daily/latest?token={token}

不指定日期时,默认返回最新行情。此接口可方便地获取每日增量行情。

更新时间:收盘后3~4小时。

更新周期:每天。

请求方式:GET。

测试:返回不超过10条数据(2年历史)
https://tsanghi.com/api/fin/stock/XSHG/daily/latest?token=demo

Request请求参数

参数名称

参数类型

参数选项

参数说明

token

字符串

必选

API Token。登录后获取。

date

字符串

可选

日期。格式“yyyy-mm-dd”,默认:最新日期。

fmt

字符串

可选

输出格式。支持json和csv两种标准输出格式,默认:json。

columns

字符串

可选

输出字段。支持自定义输出,多个字段以半角逗号分隔,默认:所有字段。

Response响应参数

参数名称

参数类型

参数说明

ticker

字符串

股票代码

date

字符串

日期。格式“yyyy-mm-dd”。

open

小数

开盘价

high

小数

最高价

low

小数

最低价

close

小数

收盘价

volume

小数

成交量

Python示例

import requests

url = f"https://tsanghi.com/api/fin/stock/XSHG/daily/latest?token=demo"
data = requests.get(url).json()
print(data)

Response示例

更多详情
https://tsanghi.com

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值