函数的递归与迭代

一、函数的递归

1、递归的思想

递归是通过函数的调用函数来实现的一直思想称为递归,递归的结构可以把大事化小一步一步解决,代码量大大减小。

2、递归的使用条件

当一个问题可以被拆分成多个相似的问题就可以考了递归,递归需要有结束条件,不然往往会产生无法结束的死递归。

3、递归时肯能出现的问题

递归会出现死递归,就是没有结束条件,不断的调用下去,在设置递归时每次递归尽量不断接近这个结束条件才行。
出来死递归,还有可能产生栈溢出的现象。
栈溢出是应为递归层次太深,不停使用内存分配的空间,递归没有结束,内存不归还,导致分配的内存空间被用完,就是栈溢出。

4、递归使用的例题

1、使用递归算出n的阶乘

#include<stdio.h>
int factorial(int n)
{
	if (n > 0)
	{
		return n * factorial(n - 1);
	}
	else
		return 1;
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d\n", factorial(n));
	return 0;
}

在这里插入图片描述

2、使用递归算出第n个斐波那契数

#include<stdio.h>
int fibonacci(int n)
{
	if (n > 2)
	{
		return fibonacci(n - 1) + fibonacci(n - 2);
	}
	else
		return 1;
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d\n", fibonacci(n));
	return 0;
}

在这里插入图片描述


二、函数的迭代

1、迭代的好处

虽然递归的代码量小,但效率低,当递归的数字大时,运算量巨大,会有巨大的重复计算,执行效率低,占用内存大。
当使用迭代时效率会大大提升。

2、迭代例题

1、使用迭代算n的阶乘

#include<stdio.h>
int factorial(int n)
{
	int ret = 1;
	for (int i = 1; i <= n; i++)
	{
		ret *= i;
	}
	return ret;
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d\n", factorial(n));
	return 0;
}

在这里插入图片描述

2、使用迭代算出第n个斐波那契数

#include<stdio.h>
int fibonacci(int n)
{
	int a = 1, b = 1, c = 1;
	for (int i = 3; i <= n; i++)
	{
		c = a + b;
		a = b;
		b = c;
	}
	return c;
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d\n", fibonacci(n));
	return 0;
}

在这里插入图片描述

用迭代算第45个斐波那契数也是一下就算出来了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值