神经网络在深度学习过程中每层训练的网络参数容量数量计算推导

下面介绍具体的神经网络在深度学习过程中,训练参数的详细产生。


案例1


假设现在有一个3X3的1维(输入通道为1)特征图输入(也即意味着该特征图相当于一张灰度图),然后由3个卷积核(过滤器、滤波器),每一个卷积核尺寸为2X2。输出3个通道特征图。神经网络训练的参数个数示意图为:

该层神经网络训练的参数个数即为:

(2*2+1)*3=15

总计15个参数, 这15个参数里面,其中12个为权重值(weights),3个偏差(biases)。


案例2


对于像普通常见的RGB彩色图片,具有3通道(R,G,B)。如果每一个输入特征图都有一个滤波器(卷积核)。产生的卷积按元素添加,并且向每个元素添加偏差项。 形成具有1个特征图的输出。

神经网络训练的参数个数计算:

4*3+1=13

总计13个参数,其中12个是权重,1个是偏差。


案例3


假设每1个输入特征图都分别有3个滤波器(以紫色,黄色,青色分别表示)。产生的卷积按元素添加,并且向每个元素添加偏差项。现在有2个特征图,最终输出3个特征图。

输入2个的特征图,最终输出3个特征图(意味着有3个偏差)。神经网络训练的参数个数为27,其中24个为权重,3个为偏差。


Python代码验证


建立神经网络,堆叠几层:

from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

from keras.models import Sequential

if name == “main”:

model = Sequential()

model.add(Conv2D(filters=32,

kernel_size=(3, 3),

input_shape=(150, 150, 3),

activation=‘relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=64,

kernel_size=(3, 3),

activation=‘relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=128,

kernel_size=(3, 3),

activation=‘relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters=128,

kernel_size=(3, 3),

activation=‘relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(units=512, activation=‘relu’))

model.add(Dense(units=1, activation=‘sigmoid’))

print(model.summary())

输出:

Model: “sequential_1”


Layer (type) Output Shape Param #

=================================================================

conv2d_1 (Conv2D) (None, 148, 148, 32) 896


max_pooling2d_1 (MaxPooling2 (None, 74, 74, 32) 0


conv2d_2 (Conv2D) (None, 72, 72, 64) 18496


《设计思想解读开源框架》

第一章、 热修复设计

  • 第一节、 AOT/JIT & dexopt 与 dex2oat

  • 第二节、 热修复设计之 CLASS_ISPREVERIFIED 问题

  • 第三节、热修复设计之热修复原理

  • 第四节、Tinker 的集成与使用(自动补丁包生成)

    第二章、 插件化框架设计

  • 第一节、 Class 文件与 Dex 文件的结构解读

  • 第二节、 Android 资源加载机制详解

  • 第三节、 四大组件调用原理

  • 第四节、 so 文件加载机制

  • 第五节、 Android 系统服务实现原理

    第三章、 组件化框架设计

  • 第一节、阿里巴巴开源路由框——ARouter 原理分析

  • 第二节、APT 编译时期自动生成代码&动态类加载

  • 第三节、 Java SPI 机制

  • 第四节、 AOP&IOC

  • 第五节、 手写组件化架构

    第四章、图片加载框架

  • 第一节、图片加载框架选型

  • 第二节、Glide 原理分析

  • 第三节、手写图片加载框架实战

    第五章、网络访问框架设计

  • 第一节、网络通信必备基础

  • 第二节、OkHttp 源码解读

  • 第三节、Retrofit 源码解析

    第六章、 RXJava 响应式编程框架设计

  • 第一节、链式调用

  • 第二节、 扩展的观察者模式

  • 第三节、事件变换设计

  • 第四节、Scheduler 线程控制

    第七章、 IOC 架构设计

  • 第一节、 依赖注入与控制反转

  • 第二节、ButterKnife 原理上篇、中篇、下篇

  • 第三节、Dagger 架构设计核心解密

    第八章、 Android 架构组件 Jetpack

  • 第一节、 LiveData 原理

  • 第二节、 Navigation 如何解决 tabLayout 问题

  • 第三节、 ViewModel 如何感知 View 生命周期及内核原理

  • 第四节、 Room 架构方式方法

  • 第五节、 dataBinding 为什么能够支持 MVVM

  • 第六节、 WorkManager 内核揭秘

  • 第七节、 Lifecycles 生命周期


    本文包含不同方向的自学编程路线、面试题集合/面经、及系列技术文章等,资源持续更新中…

    《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!
    能够支持 MVVM**

  • 第六节、 WorkManager 内核揭秘

  • 第七节、 Lifecycles 生命周期

    [外链图片转存中…(img-w9Lmk4Zq-1715346498817)]
    本文包含不同方向的自学编程路线、面试题集合/面经、及系列技术文章等,资源持续更新中…
    [外链图片转存中…(img-z3Jk4op4-1715346498817)]
    《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》点击传送门,即可获取!

  • 22
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network,CNN)是一种常用于图像识别和计算机视觉任务的深度学习模型。其理论推导过程如下: 1. 卷积操作:CNN的核心操作是卷积操作。卷积操作是指将输入图像与一个称为卷积核的小矩阵进行卷积运算,生成一张新的特征图。卷积运算可以有效地提取图像的局部特征,由于权重共享机制,使得卷积网络能够处理大规模图像且减少参数数量。 2. 激活函数:卷积操作后,需要对特征图进行非线性变换,引入了激活函数。常用的激活函数有ReLU(Rectified Linear Unit)、Sigmoid和Tanh等。 3. 池化操作:在卷积操作后,通常会进行池化操作。池化操作通过在特征图上滑动一个固定大小的窗口,将窗口内的特征进行聚合,生成新的特征图。池化操作能够压缩特征图的空间尺寸并保留主要特征,减少网络对位置的敏感性。 4. 全连接层:经过多次卷积和池化操作后,得到的特征图需要通过全连接层进行分类或回归。全连接层将特征图展开成一维向量,与权重矩阵相乘后经过激活函数得到最终的输出结果。 5. 损失函数与优化:在训练过程,需要定义一个损失函数来度量模型输出与真实值之间的差异。常用的损失函数有均方误差损失和交叉熵损失。通过反向传播算法,计算损失函数对网络各个参数的梯度,并使用梯度下降优化算法来更新参数,使得模型能够逐渐收敛。 以上就是CNN的理论推导详细过程,包括卷积操作、激活函数、池化操作、全连接层和损失函数与优化等关键步骤。通过这些过程,CNN能够自动从输入图像提取特征,并进行有效的分类与预测。 ### 回答2: CNN(卷积神经网络)是一种经典的深度学习模型,主要用于图像处理和模式识别任务。以下是CNN的理论推导过程的详细步骤: 1. 卷积操作:CNN的核心是卷积操作,它通过将图像与一个卷积核进行卷积运算来提取特征。卷积操作是通过将卷积核滑动到图像的每个位置,将每个位置上的像素与卷积核的权重相乘,然后求和得到输出特征图的一个像素。 2. 激活函数:卷积操作之后通常会使用激活函数来引入非线性。常用的激活函数包括ReLU、Sigmoid和Tanh等。激活函数能够增加网络的表达能力,使其能够更好地拟合复杂的数据分布。 3. 池化操作:在卷积操作之后,通常会加入池化层来减小特征图的尺寸,并降低网络计算复杂度。常用的池化操作包括最大池化和平均池化,它们分别选取特定区域的最大值或平均值作为输出。 4. 多层堆叠:CNN通常由多个卷积层、激活函数层和池化层堆叠而成。通过多层堆叠,网络能够在不同层次上提取图像的不同抽象特征。 5. 全连接层:在经过多层的卷积和池化之后,通常会添加全连接层来进行最后的分类。全连接层的神经元与前一层的所有神经元相连接,它能够结合前面层次提取的特征来进行分类。 6. 损失函数和优化:在训练CNN时,需要定义一个损失函数来度量模型的预测值与真实值之间的差异,并使用优化算法来最小化损失函数。常用的优化算法包括梯度下降法和反向传播算法。 总的来说,CNN通过堆叠卷积、激活、池化和全连接层的方式,以及使用损失函数和优化算法来实现对图像的特征提取和分类。通过反向传播算法,CNN能够自动学习到适合特定任务的卷积核和网络参数,从而提高模型的预测准确性。 ### 回答3: 卷积神经网络(Convolutional Neural Network,简称CNN)是一种广泛应用于图像处理和识别任务的深度学习模型。它的核心思想是通过卷积操作来提取图像的特征,并通过深层次的网络结构实现对特征的高级抽象和分类。 CNN的理论推导包含以下的详细过程: 1. 数据预处理:在使用CNN之前,需要对输入数据进行预处理。常见的预处理方法包括图像的归一化、标准化和平衡化等操作,以便提高模型的训练效果。 2. 卷积操作:卷积是CNN的核心操作,它通过在输入图像上滑动一个固定大小的卷积核(也称为滤波器)来提取局部的特征。卷积核与输入图像的对应位置相乘,并将结果相加得到输出特征图。 3. 激活函数:卷积操作后,需要对输出进行激活函数处理。常用的激活函数有ReLU、Sigmoid和Tanh等,它们能够增加网络的非线性表达能力,并提高模型的性能。 4. 池化操作:池化是一种降采样操作,它能够通过减少特征图的尺寸,提取更加鲁棒的特征,并减少模型的参数数量。常见的池化操作有最大池化和平均池化,它们分别选择局部区域内的最大值和平均值作为输出。 5. 全连接层:在经过多次卷积和池化操作后,最后一层通常是全连接层。全连接层将前一层的输出展平成一个向量,并通过矩阵运算和激活函数处理,得到最终的分类结果。 6. 损失函数:为了评价模型的性能,需要定义损失函数来衡量模型的预测值与真实标签之间的差异。常见的损失函数有交叉熵损失函数和均方误差损失函数等。 7. 反向传播:通过反向传播算法,从输出层到输入层逐层计算每个参数对损失的贡献,并根据损失的梯度更新参数,以使得模型的输出更加接近真实标签。 8. 模型训练:通过迭代训练样本,更新模型的参数,使得模型在训练数据上的损失逐渐减小。常见的优化算法有随机梯度下降和Adam等。 以上是CNN的理论推导的详细过程,通过以上的步骤,我们可以得到一个训练好的CNN模型,用于图像处理和识别任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值