五、Hadoop集群部署:从零搭建三节点Hadoop环境(保姆级教程)

作者:IvanCodes
日期:2025年5月7日
专栏:Hadoop教程

前言:
想玩转大数据Hadoop集群是绕不开的一道坎。很多小伙伴一看到集群部署就头大各种配置各种坑别慌这篇教程就是你的“救生圈”


一、磨刀不误砍柴工:环境准备(虚拟机与网络)

虚拟机克隆与基础配置 (以VMware为例)

第一步:准备一台基础Linux虚拟机:

你需要一台安装好Linux(推荐CentOS 7 或 Ubuntu 24.04.2/20.04)的虚拟机。确保它已安装常用工具,网络能通。

第二步:克隆虚拟机:

1.启动克隆向导: 在VMware Workstation中,右键点击你准备好的虚拟机,选择 “管理” -> “克隆”。

在这里插入图片描述
接着会弹出“欢迎使用克隆虚拟机向导”界面,直接点击“下一步”。
在这里插入图片描述
2.选择克隆源: 默认选择“虚拟机中的当前状态”,直接点击“下一步”。
在这里插入图片描述
3.选择克隆类型: 选择“创建完整克隆”。完整克隆会复制整个虚拟硬盘,确保每台“小鸡”都是独立的,不会相互影响。链接克隆虽然省空间,但不适合我们做集群。点击“下一步”。
在这里插入图片描述
4.命名与存放位置:
在这里插入图片描述

第三步:Windows宿主机VMnet8网卡IP配置

1.在Windows设置中,进入 “网络和 Internet”
2.点击 “高级网络设置”
在这里插入图片描述
3.找到 “VMware Network Adapter VMnet8”,展开它,点击 “查看其他属性”
在这里插入图片描述
4.点击“IP 分配”旁边的“编辑”
在这里插入图片描述
5.在“编辑 IP 设置”中,选择“手动”,打开IPv4,然后填写IP地址(如 192.168.121.1)和子网掩码(255.255.255.0)。网关和DNS对于这个宿主机的虚拟网卡通常不需要填写,或者可以填写VMnet8的网关(192.168.121.2)和你的常用DNS。
在这里插入图片描述

第四步:VMware虚拟网络配置 (关键步骤!)

1.在VMware Workstation主界面,点击菜单栏的 “编辑” -> “虚拟网络编辑器”
在这里插入图片描述
2.在“虚拟网络编辑器”中,你会看到一个网络列表,找到 VMnet8 (通常类型是NAT模式)
3.如果下方的配置选项是灰色的,你需要点击右下角的 “更改设置” 按钮,并可能需要提供管理员权限
在这里插入图片描述
4.选中VMnet8,然后进行以下配置:

4.1.确保连接类型选择 “NAT模式(与虚拟机共享主机的IP地址)”
4.2.取消勾选 “使用本地DHCP服务将IP地址分配给虚拟机”
子网IP: 输入 192.168.121.0
子网掩码: 输入 255.255.255.0
在这里插入图片描述
5.配置NAT设置 (网关):
“网关 IP(G):” 设置为 192.168.121.2
在这里插入图片描述
配置DHCP设置 (定义IP地址范围,可选但推荐检查):
起始 IP 地址(S): 192.168.121.130
结束 IP 地址(E): 192.168.121.255

在这里插入图片描述

第五步:Linux虚拟机静态IP配置 (核心!以CentOS 7为例):

每台Linux虚拟机上,编辑网络配置文件,例如 /etc/sysconfig/network-scripts/ifcfg-ens33 (你的网卡名可能不同)。

 vim /etc/sysconfig/network-scripts/ifcfg-ens33

在这里插入图片描述
hadoop02 的配置:将 IPADDR 改为 192.168.121.132
hadoop03 的配置:将 IPADDR 改为 192.168.121.133

  • 配置源码 (ifcfg-ensXX):
TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=static
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=ensXX
DEVICE=ensXX
ONBOOT=yes
IPADDR=192.168.121.131
NETMASK=255.255.255.0
GATEWAY=192.168.121.2  
DNS1=114.114.114.114    
  • 配置主机映射
  • hadoop01, hadoop02, hadoop03上都执行:
vim /etc/hosts

在这里插入图片描述

  • 修改 hadoop01 的主机名:
hostnamectl set-hostname hadoop01
  • 重启主机
reboot
  • ip a验证ip是否改正
  • 查看网络能否正常ping

在这里插入图片描述

第六步:使用FinalShell连接虚拟机:

在这里插入图片描述
在这里插入图片描述

2. 关闭防火墙和selinux

  • 关闭防火墙:
systemctl stop firewalld
systemctl disable firewalld
  • 关闭SELinux:
vim /etc/selinux/config
# SELINUX=disabled
#需重启虚拟机

在这里插入图片描述

3.配置SSH免密登录 (核心):
hadoop01 中执行:

#验证ssh协议
ps -e | grep sshd
#生成钥匙
ssh-keygen -t rsa
#复制密码发送到其他设备
ssh-copy-id root@hadoop01
ssh-copy-id root@hadoop02
ssh-copy-id root@hadoop03

在这里插入图片描述
在这里插入图片描述

4.时间同步 (NTP):

yum install -y ntp
systemctl start ntpd
systemctl enable ntpd

在这里插入图片描述
在这里插入图片描述

5. 安装Java JDK

# 创建存放软件和安装包的目录
mkdir -p /export/server /export/softwares

5.1.上传并解压JDK安装包:
将你准备好的 jdk-8u361-linux-x64.tar.gz 文件,通过 FinalShell 的上传功能(或者其他sftp工具),上传到三台虚拟机/export/softwares/ 目录下。

进入 /export/server/ 目录,并解压 JDK 安装包:

cd /export/server/ # 进入我们计划安装软件的目录
# 解压 JDK 安装包
tar -xzf /export/softwares/jdk-8u361-linux-x64.tar.gz
# 解压后通常会得到一个名为 jdk1.8.0_361 的目录,用ls确认一下
ls /export/server/

在这里插入图片描述

5.2.配置 JAVA_HOME 环境变量:
每台机器上,编辑环境变量文件 ~/.bashrc

vim ~/.bashrc

在这里插入图片描述

export JAVA_HOME=/export/server/jdk1.8.0_361 # 注意这里的路径和解压出来的目录名一致
export PATH=$PATH:$JAVA_HOME/bin
source ~/.bashrc

在这里插入图片描述

二、Hadoop 安装与配置

1. 解压Hadoop到指定目录 (/export/server/)

  • 上传Hadoop安装包:hadoop-3.3.4.tar.gz 安装包,通过 FinalShell 上传到三台虚拟机/export/softwares/ 目录下。

  • 解压Hadoop到 /export/server/ 并重命名:

# 解压 Hadoop 安装包
tar -xzf /export/softwares/hadoop-3.3.4.tar.gz
# 为了方便,我们把它重命名为简洁的 hadoop
mv hadoop-3.3.4 hadoop

在这里插入图片描述

2. 配置Hadoop环境变量

编辑~/.bashrc 文件,追加 Hadoop 相关的环境变量:

vim ~/.bashrc

在这里插入图片描述

在文件末尾添加:

export HADOOP_HOME=/export/server/hadoop # 注意这里的路径是自定义安装路径
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin # 将 Hadoop 的命令加入到 PATH
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop # 指定 Hadoop 配置文件的位置
export HADOOP_LOG_DIR=$HADOOP_HOME/logs # 指定 Hadoop 日志文件的位置
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop # YARN 配置文件的位置

让环境变量生效:

source ~/.bashrc

在这里插入图片描述

3. 修改Hadoop核心配置文件 (重点)

主要在 hadoop01 上修改,然后分发给其他节点。

  • (A) hadoop-env.sh (所有节点一致修改)
    • 这个文件主要配置 Hadoop 运行的环境,比如指定 Java。
cd /export/server/hadoop/etc/hadoop/
vim hadoop-env.sh
export JAVA_HOME=/export/server/jdk1.8.0_361 
export HDFS_NAMENODE_USER="root"
export HDFS_DATANODE_USER="root"
export HDFS_SECONDARYNAMENODE_USER="root"
export YARN_RESOURCEMANAGER_USER="root"
export YARN_NODEMANAGER_USER="root"

在这里插入图片描述

在这里插入图片描述

  • (B) core-site.xml (所有节点一致修改)
    • 这是 Hadoop 的核心配置文件,配置HDFS的地址、临时文件目录等。
vim /core-site.xml
<configuration>
    <!-- 指定HDFS中NameNode的地址 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hadoop01:9000</value>
    </property>
    <!-- 指定Hadoop运行时产生文件的存储目录,比如MapReduce的临时数据 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/export/data/hadoop</value> <!-- 修改为自定义路径下的临时数据目录 -->
    </property>
    <!-- (可选但推荐) 用于WebHDFS和HTTPFS的用户模拟配置,让指定用户(这里是hadoopuser)可以模拟其他用户 -->
    <property>
        <name>hadoop.proxyuser.hadoopuser.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.hadoopuser.groups</name>
        <value>*</value>
    </property>
<!-- 整合hive 用户代理设置 -->
<property>
    <name>hadoop.proxyuser.root.hosts</name>
    <value>*</value>
</property>
<property>
    <name>hadoop.proxyuser.root.groups</name>
    <value>*</value>
</property>
</configuration>
  • © hdfs-site.xml (所有节点一致修改)
    • 这个文件配置 HDFS 的具体参数,比如副本数量、NameNode和DataNode数据存放位置等。
vim hdfs-site.xml
<configuration>
    <!-- NameNode的Web UI访问地址 (Hadoop 3.x默认端口9870) -->
    <property>
        <name>dfs.namenode.http-address</name>
        <value>hadoop01:9870</value>
    </property>
    <!-- SecondaryNameNode的Web UI访问地址 (Hadoop 3.x默认端口9868) -->
    <property>
        <name>dfs.secondary.http-address</name>
        <value>hadoop01:9868</value> <!-- 我们也让它在hadoop01上 -->
    </property>
    <!-- SecondaryNameNode所在的主机和端口,NameNode会向它发送元数据 -->
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>hadoop01:9868</value>
    </property>
    <!-- HDFS副本数量,我们有3个节点,可以设置为2或3。这里先设为2,至少保证有两个DataNode时数据有冗余 -->
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <!-- NameNode元数据(fsimage和editlog)存放的本地磁盘路径 -->
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/export/server/hadoop/dfs_data/name</value> <!-- 修改为自定义路径 -->
    </property>
    <!-- DataNode数据块存放的本地磁盘路径 -->
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/export/server/hadoop/dfs_data/data</value> <!-- 修改为自定义路径 -->
    </property>
    <!-- 开启WebHDFS功能,可以通过HTTP访问HDFS文件 -->
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
</configuration>
  • (D) yarn-site.xml (所有节点一致修改)
    • 这是 YARN (资源管理器) 的配置文件。
vim yarn-site.xml
<configuration>
    <!-- 指定YARN的ResourceManager(RM)的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop01</value>
    </property>
    <!-- NodeManager上运行的附属服务,MapReduce Shuffle是必须的 -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <!-- ResourceManager的Web UI访问地址 (默认端口8088) -->
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>hadoop01:8088</value>
    </property>
    <!-- (可选) 开启日志聚集功能,方便在Web UI上查看已完成任务的日志 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <!-- MapReduce JobHistory Server 的日志服务地址 -->
    <property>
        <name>yarn.log.server.url</name>
        <value>http://hadoop01:19888/jobhistory/logs</value> <!-- 指向JobHistoryServer的Web UI -->
    </property>
    <!-- (可选) 日志保留时间 -->
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value> <!-- 日志保留7天 (604800秒) -->
    </property>
</configuration>
  • (E) mapred-site.xml (所有节点一致修改)
    • 这个文件配置 MapReduce 的运行时框架和 JobHistory Server。
vim mapred-site.xml
<configuration>
    <!-- 指定MapReduce作业运行在YARN上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <!-- MapReduce JobHistory Server 地址 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop01:10020</value>
    </property>
    <!-- MapReduce JobHistory Server Web UI 地址 (默认端口19888) -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop01:19888</value>
    </property>
    <!-- (Hadoop 3.x需要) 使YARN能够正确找到和分发MapReduce相关的JAR包 -->
    <property>
        <name>yarn.app.mapreduce.am.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
        <name>mapreduce.map.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
    <property>
        <name>mapreduce.reduce.env</name>
        <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
    </property>
</configuration>
  • (F) workers 文件 (仅在 hadoop01 上修改,然后分发)
    • 这个文件告诉 start-dfs.shstart-yarn.sh 脚本,需要在哪些机器上启动 DataNode 和 NodeManager 进程。
vim workers
hadoop01
hadoop02
hadoop03

4. 分发配置文件 (在 hadoop01 上执行)

好了,配置文件修改完了。把 hadoop01 上的配置文件同步到 hadoop02hadoop03 去。

  • 确保你在 hadoopuser 用户下,且在 $HADOOP_HOME/etc/ 目录下(也就是 /export/server/hadoop/etc/)。
cd /export/server
scp ~/.bashrc hadoop02:~/.bashrc
scp ~/.bashrc hadoop03:~/.bashrc
#传完之后要在hadoop02和hadoop03上分别执行 source /etc/profile 命令,来刷新配置文件
scp -r hadoop hadoop02:$PWD
scp -r jdk1.8.0_361 hadoop02:$PWD
scp -r hadoop hadoop03:$PWD
scp -r jdk1.8.0_361 hadoop03:$PWD

5.验证是否成功
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值