《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!
- 同一月,GitHub上Star突破15k+,截止发文时点,已经16K+!
然后就在这个月,PaddleOCR的项目团队宣布,根据之前项目中碰到的问题以及解决经验,经过整组团队人员的共同努力,构建并发布新一代的OCR系统PP-OCRv2。
PP-OCRv2CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%
简单的说,就是更高更快更强!
同时在功能加强的基础上,大小仅13M(检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M),可以轻松部署服务器端和移动端。
光说不练假把式,说了那么多我们先来一起看下PP-OCRv2的实际识别效果究竟如何:
看着的确不错,别急,还有各种其他不同的场景,例如:
中文识别模型
英文识别模型
多语言识别模型
光看效果是不错,但是如果程序猿小伙伴遇到问题不会用怎么办?
项目组考虑到这点,特地为众多好学的程序猿小伙伴准备了丰富详尽的教程文档。
从项目环境的准备,到项目的运行,快速开始,各种模型的设计训练,各种实际的部署以及常见的问题,光看看这个教程,就感觉受益匪浅了~
总的来说, PP-OCRv2是在PP-OCR的基础上,在5个方面重点优化:
-
检测模型采用CML协同互学习知识蒸馏策略
-
CopyPaste数据增广策略
-
识别模型采用LCNet轻量级骨干网络
-
UDML 改进知识蒸馏策略
-
Enhanced CTC loss损失函数改进
(如下图红框所示)进一步在推理速度和预测效果上取得明显提升。
对于上述更新内容有兴趣想深度钻研的小伙伴,这里还有一份长达8页的文档,可供研究学习(下载地址同项目地址一并关注公众号回复关键字后提供)
最后
经过日积月累, 以下是小编归纳整理的深入了解Java虚拟机文档,希望可以帮助大家过关斩将顺利通过面试。
由于整个文档比较全面,内容比较多,篇幅不允许,下面以截图方式展示 。
由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!
所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!**
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门,即可获取!