目录
1. Retinex理论
Retinex理论是基于人类视觉系统如何感知颜色和亮度的模型。人类眼睛在不同光照条件下能够保持对物体颜色的恒定感知,这被称为颜色恒常性。Retinex理论试图通过模拟这种感知过程,来实现对图像的增强处理。核心思想是通过局部对比度的增强,使得图像中的细节更加突出。
2. Retinex-MSR原理
Multi-Scale-Retinex(MSR)是一种基于多尺度的Retinex图像增强方法,它通过模拟人类视觉系统对图像进行处理,旨在提高图像的对比度和色彩细节,特别是用于处理低光照、雾霾等导致图像质量下降的场景。Retinex理论由Edwin Land在20世纪60年代提出,而Multi-Scale Retinex则是在Retinex基础上的改进和扩展,优点是可以同时保持图像高保真度与对图像的动态范围进行压缩的同时,MSR也可实现色彩增强、颜色恒常性、局部动态范围压缩、全局动态范围压缩,也可以用于X光图像增强。多尺度增强算法MSR(Multi-Scale Retinex)最为经典的就是3尺度的,大、中、小,既能实现图像动态范围的压缩,又能保持色感的一致性较好。在SSR基础上改进,能够保持图像的高保真度和对图像的动态范围进行压缩。其实就是将多个SSR做平均,区别在于高斯模糊部分选择了不同的sigma。
3. 处理过程
多尺度处理:对输入图像在多个尺度上进行Retinex处理。不同尺度的处理可以捕捉到不同细节层次的信息。通常使用高斯滤波器来实现不同尺度的分解。
合并处理结果:将多个尺度的Retinex结果进行合并,通常通过加权平均的方式,以得到最终的增强图像。
对比度增强:在合并后的图像上进一步进行对比度的调整,确保图像的视觉效果更加符合人类的感知特点。
4. Retinex-MSR的优缺点
4.1 优点
提高图像对比度:MSR方法能够显著提高图像的对比度,使得图像中的细节更加清晰。
颜色恢复:MSR方法在增强图像对比度的同时,能够较好地保留原始图像的颜色信息。
适应性强:对于不同的光照条件和雾霾环境,MSR方法都能取得良好的图像增强效果。
4.2 缺点
边缘锐化不足:处理时更注重全局对比度和色彩恢复,可能在细节和边缘增强方面不如一些专门的锐化算法。
阴影边界突兀:增强对比度的过程中,可能会导致阴影和高光区域之间的过渡变得不自然及纹理不清晰。
部分颜色发生扭曲:在调整对比度和亮度时,可能导致颜色信息失真,尤其是对比度调整过度时。
5. Retinex-MSR算法步骤
输入图像预处理:将输入图像转换到灰度空间或进行颜色空间的转换(如从RGB转换到HSV)。
多尺度Retinex处理:
1.对输入图像进行多尺度分解,得到不同尺度的图像。
2.对每一个尺度的图像进行Retinex处理,计算其对数变换后的亮度值与其平滑图像的对数值之差。
结果合并:将所有尺度上的Retinex处理结果进行加权合并,得到增强后的图像。
后处理:对合并后的图像进行动态范围调整和色彩恢复,以确保图像的自然视觉效果。
5.1 比较图像
5.2 结果分析
SSR能够较好地完成动态范围的压缩,暗区域的细节能得到较好地增强,但也明显出现了色差。同单尺度相比,MSR既能实现图像动态范围的压缩,又能保持色感的一致性较好。从图中可以看出MSR比SSR还原出的原图更清晰一点,虽然不太明显。
6. Retinex-MSR的应用
图像去雾:在雾霾天气下拍摄的图像通常对比度低,细节模糊,MSR方法能够有效去除雾霾影响,恢复图像细节。
低光照图像增强:在低光照条件下拍摄的图像通常较暗,细节不清晰,MSR方法可以提高图像亮度和对比度。
医学图像处理:在医学成像中,MSR方法可以用来增强图像细节,有助于医生更好地观察和诊断。