> 2.优化内层循环
在每趟扫描中,记住最后一次交换发生的位置。下一趟排序开始时,R[位置-1]是无序区,R[位置~n]是有序区,从而减少排序的趟数。
> 算法分析
最佳情况:T(n) = O(n)
最差情况:T(n) = O(n^2)
平均情况:T(n) = O(n^2)
===================================================================
实现步骤:
-
1: 初始状态:无序区为[1…n],有序区为空
-
2: 第 i 趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为[1…i-1]和(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 [k],将它与无序区的第 1 个记录 R 交换,使[1…i]和[i+1…n)分别变为记录个数增加 1 个的新有序区和记录个数减少 1 个的新无序区
-
3: n-1 趟结束,数组有序化了
动图:
代码:
算法分析
-
最佳情况:T(n) = O(n^2)
-
最差情况:T(n) = O(n^2)
-
平均情况:T(n) = O(n^2)
===================================================================
实现步骤:
-
1: 从第一个元素开始,该元素可以认为已经被排序
-
2: 取出下一个元素,在已经排序的元素序列中从后向前扫描
-
3: 如果该元素(已排序)大于新元素,将该元素移到下一位置
-
4: 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置
-
5: 将新元素插入到该位置后
-
6: 重复步骤 2~5。
动图:
代码:
算法分析
-
最佳情况:T(n) = O(n)
-
最差情况:T(n) = O(n^2)
-
平均情况:T(n) = O(n^2)
===================================================================
实现步骤:
-
1:选择一个增量序列 t1,t2,…,tk,其中 ti>tj,tk=1;
-
2:按增量序列个数 k,对序列进行 k 趟排序;
-
3:每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
动图:
代码:
算法分析
-
最佳情况:T(n) = O(nlog2 n)
-
最差情况:T(n) = O(nlog2 n)
-
平均情况:T(n) = O(nlog2 n)
===================================================================
实现步骤:
-
1:把长度为 n 的输入序列分成两个长度为 n/2 的子序列
-
2:对这两个子序列分别采用归并排序
-
3:将两个排序好的子序列合并成一个最终的排序序列
动图:
代码:
算法分析
-
最佳情况:T(n) = O(n)
-
最差情况:T(n) = O(nlogn)
-
平均情况:T(n) = O(nlogn)
===================================================================
实现步骤:
-
1:从数列中挑出一个元素,称为 “基准”(pivot )
-
2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作
-
3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序
动图:
代码:
算法分析
-
最佳情况:T(n) = O(nlogn)
-
最差情况:T(n) = O(n^2)
-
平均情况:T(n) = O(nlogn)
==================================================================
这里用到了完全二叉树的部分性质
实现步骤:
-
1:将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区
-
2:将堆顶元素 R[1]与最后一个元素 R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足 R[1,2…n-1]<=R[n]
-
3:由于交换后新的堆顶 R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将 R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为 n-1,则整个排序过程完成
动图:
代码:
算法分析
-
最佳情况:T(n) = O(nlogn)
-
最差情况:T(n) = O(nlogn)
-
平均情况:T(n) = O(nlogn)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注前端)
总结
-
框架原理真的深入某一部分具体的代码和实现方式时,要多注意到细节,不要只能写出一个框架。
-
算法方面很薄弱的,最好多刷一刷,不然影响你的工资和成功率😯
-
在投递简历之前,最好通过各种渠道找到公司内部的人,先提前了解业务,也可以帮助后期优秀 offer 的决策。
-
要勇于说不,对于某些 offer 待遇不满意、业务不喜欢,应该相信自己,不要因为当下没有更好的 offer 而投降,一份工作短则一年长则 N 年,为了幸福生活要慎重选择!!!
喜欢这篇文章文章的小伙伴们点赞+转发支持,你们的支持是我最大的动力!
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
r 待遇不满意、业务不喜欢,应该相信自己,不要因为当下没有更好的 offer 而投降,一份工作短则一年长则 N 年,为了幸福生活要慎重选择!!!
喜欢这篇文章文章的小伙伴们点赞+转发支持,你们的支持是我最大的动力!
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-h9XJjClO-1712752635143)]