4. Dubbo 集群的负载均衡有哪些策略? Dubbo 提供了常见的集群策略实现,并预扩展点予以自行实现。
-
Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀;
-
RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题;
-
LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求;
-
ConstantHash LoadBalance: 一致性 Hash 策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动;
5. Dubbo 是什么? Dubbo 是一个分布式、高性能、透明化的 RPC 服务框架,提供服务自动注册、自动发现等高效服务治理方案, 可以和Spring 框架无缝集成
6. Dubbo 的主要应用场景?
-
透明化的远程方法调用,就像调用本地方法一样调用远程方法,只需简单配置,没有任何 API 侵入。
-
软负载均衡及容错机制,可在内网替代 F5 等硬件负载均衡器,降低成本,减少单点。
-
服务自动注册与发现,不再需要写死服务提供方地址,注册中心基于接口名查询服务提供者的 IP 地址,并且能够平滑添加或删除服务提供者。
7. Dubbo 的核心功能? 主要就是如下 3 个核心功能:
-
Remoting: 网络通信框架,提供对多种 NIO 框架抽象封装,包括“同步转异步”和“请求-响应”模式的信息交换方式。
-
Cluster:服务框架,提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集群支持。
-
Registry:服务注册,基于注册中心目录服务,使服务消费方能动态的查找服务提供方,使地址透明,使服务提供方可以平滑增加或减少机器。
8. Dubbo 服务注册与发现的流程? 流程说明:
-
Provider(提供者)绑定指定端口并启动服务
-
指供者连接注册中心,并发本机 IP、端口、应用信息和提供服务信息发送至注册中心存储
-
Consumer(消费者),连接注册中心 ,并发送应用信息、所求服务信息至注册中心
-
注册中心根据 消费 者所求服务信息匹配对应的提供者列表发送至Consumer 应用缓存。
-
Consumer 在发起远程调用时基于缓存的消费者列表择其一发起调用。
-
Provider 状态变更会实时通知注册中心、在由注册中心实时推送至Consumer 设计的原因:
-
Consumer 与 Provider 解偶,双方都可以横向增减节点数。
-
注册中心对本身可做对等集群,可动态增减节点,并且任意一台宕掉后,将自动切换到另一台
-
去中心化,双方不直接依懒注册中心,即使注册中心全部宕机短时间内也不会影响服务的调用
-
服务提供者无状态,任意一台宕掉后,不影响使用
9. Dubbo 的架构设计 Dubbo 框架设计一共划分了 10 个层:
-
服务接口层( Service) :该层是与实际业务逻辑相关的,根据服务提供方和服务消费方的业务设计对应的接口和实现。
-
配置层( Config) :对外配置接口,以 ServiceConfig 和ReferenceConfig 为中心。
-
服务代理层( Proxy):服务接口透明代理,生成服务的客户端 Stub和服务器端 Skeleton
-
服务注册层( Registry) :封装服务地址的注册与发现,以服务 URL为中心。
-
集群层( Cluster) :封装多个提供者的路由及负载均衡,并桥接注册中心,以 Invoker 为中心。
-
监控层( Monitor) : RPC 调用次数和调用时间监控。
-
远程调用层( Protocol) :封将 RPC 调用,以 Invocation 和 Result为中心,扩展接口为 Protocol、 Invoker 和 Exporter。
-
信息交换层( Exchange) :封装请求响应模式,同步转异步,以Request 和 Response 为中心。
-
网络传输层( Transport) :抽象 mina 和 netty 为统一接口,以Message 为中心。
10. Dubbo 的服务调用流程?
11. Dubbo 的核心组件?
12. Dubbo 支持哪些协议,每种协议的应用场景,优缺点?
-
dubbo: 单一长连接和 NIO 异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者。传输协议 TCP,异步, Hessian 序列化;
-
rmi: 采用 JDK 标准的 rmi 协议实现,传输参数和返回参数对象需要实现 Serializable 接口,使用 java 标准序列化机制,使用阻塞式短连接,传输数据包大小混合,消费者和提供者个数差不多,可传文件,传输协议 TCP。 多个短连接, TCP 协议传输,同步传输,适用常规的远程服务调用和rmi 互操作。在依赖低版本的 Common-Collections包, java 序列化存在安全漏洞;
-
webservice: 基于 WebService 的远程调用协议,集成 CXF 实现,提供和原生 WebService 的互操作。多个短连接,基于 HTTP 传输,同步传输,适用系统集成和跨语言调用;
-
http: 基于 Http 表单提交的远程调用协议,使用 Spring 的HttpInvoke 实现。多个短连接,传输协议 HTTP,传入参数大小混合,提供者个数多于消费者,需要给应用程序和浏览器 JS 调用;
-
hessian: 集成 Hessian 服务,基于 HTTP 通讯,采用 Servlet 暴露服务, Dubbo 内嵌 Jetty 作为服务器时默认实现,提供与 Hession 服务互操作。多个短连接,同步 HTTP 传输, Hessian 序列化,传入参数较大,提供者大于消费者,提供者压力较大,可传文件;
-
memcache: 基于 memcached 实现的 RPC 协议
-
redis: 基于 redis 实现的 RPC 协议
13. dubbo 推荐用什么协议? 默认使用 dubbo 协议
14. Dubbo 有些哪些注册中心?
-
Multicast 注册中心: Multicast 注册中心不需要任何中心节点,只要广播地址,就能进行服务注册和发现。基于网络中组播传输实现; Zookeeper 注册中心: 基于分布式协调系统 Zookeeper 实现,采用Zookeeper 的 watch 机制实现数据变更;
-
redis 注册中心: 基于 redis 实现,采用 key/Map 存储,住 key 存储服务名和类型, Map 中 key 存储服务 URL, value 服务过期时间。基于 redis 的发布/订阅模式通知数据变更;
-
Simple 注册中心
15. Dubbo 默认采用注册中心? 采用 Zookeeper
16. 为什么需要服务治理?
-
过多的服务 URL 配置困难
-
负载均衡分配节点压力过大的情况下也需要部署集群 服务依赖混乱,启动顺序不清晰
-
过多服务导致性能指标分析难度较大,需要监控
17. Dubbo 的注册中心集群挂掉,发布者和订阅者之间还能通信么? 可以的,启动 dubbo 时,消费者会从 zookeeper 拉取注册的生产者的地址接口等数据,缓存在本地。 每次调用时,按照本地存储的地址进行调用。
18. Dubbo 与 Spring 的关系? Dubbo 采用全 Spring 配置方式,透明化接入应用,对应用没有任何API 侵入,只需用 Spring 加载 Dubbo 的配置即可, Dubbo 基于Spring 的 Schema 扩展进行加载。
19. Dubbo 使用的是什么通信框架? 默认使用 NIO Netty 框架
20. Dubbo 集群提供了哪些负载均衡策略?
-
Random LoadBalance: 随机选取提供者策略,有利于动态调整提供者权重。截面碰撞率高,调用次数越多,分布越均匀;
-
RoundRobin LoadBalance: 轮循选取提供者策略,平均分布,但是存在请求累积的问题; LeastActive LoadBalance: 最少活跃调用策略,解决慢提供者接收更少的请求;
-
ConstantHash LoadBalance: 一致性 Hash 策略,使相同参数请求总是发到同一提供者,一台机器宕机,可以基于虚拟节点,分摊至其他提供者,避免引起提供者的剧烈变动;
-
缺省时为 Random 随机调用
总结
面试难免让人焦虑不安。经历过的人都懂的。但是如果你提前预测面试官要问你的问题并想出得体的回答方式,就会容易很多。
此外,都说“面试造火箭,工作拧螺丝”,那对于准备面试的朋友,你只需懂一个字:刷!
给我刷刷刷刷,使劲儿刷刷刷刷刷!今天既是来谈面试的,那就必须得来整点面试真题,这不花了我整28天,做了份“Java一线大厂高岗面试题解析合集:JAVA基础-中级-高级面试+SSM框架+分布式+性能调优+微服务+并发编程+网络+设计模式+数据结构与算法等”
且除了单纯的刷题,也得需准备一本【JAVA进阶核心知识手册】:JVM、JAVA集合、JAVA多线程并发、JAVA基础、Spring 原理、微服务、Netty与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。
y与RPC、网络、日志、Zookeeper、Kafka、RabbitMQ、Hbase、MongoDB、Cassandra、设计模式、负载均衡、数据库、一致性算法、JAVA算法、数据结构、加密算法、分布式缓存、Hadoop、Spark、Storm、YARN、机器学习、云计算,用来查漏补缺最好不过。
[外链图片转存中…(img-ZJWCvWeh-1714375958376)]