Common Sort - 常见的几种排序 与 不常见的几种排序 - Java - 细节狂魔(1)

面试结束复盘查漏补缺

每次面试都是检验自己知识与技术实力的一次机会,面试结束后建议大家及时总结复盘,查漏补缺,然后有针对性地进行学习,既能提高下一场面试的成功概率,还能增加自己的技术知识栈储备,可谓是一举两得。

以下最新总结的阿里P6资深Java必考题范围和答案,包含最全MySQL、Redis、Java并发编程等等面试题和答案,用于参考~

重要的事说三遍,关注+关注+关注!

历经30天,说说我的支付宝4面+美团4面+拼多多四面,侥幸全获Offer

image.png

更多笔记分享

历经30天,说说我的支付宝4面+美团4面+拼多多四面,侥幸全获Offer

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

在这里插入图片描述


模拟实现 - 希尔排序



import java.util.Arrays;



public class ShellSort {

    /*

    * 时间复杂度和增量有关系,所以无法得出准确的时间复杂度

    * 但只需要记住:在一定的范围里,希尔排序的时间复杂度为 O(N^1.3 ~ N^1.5)

    * 空间复杂度为 O(1)

    * 稳定性:不稳定

    * 判断稳定性的技巧:如果在比较的过程中 发生了 跳跃式交换。那么,就是不稳定的排序。

    * */

    public static void shell(int[] array,int group){

        for (int i = group; i < array.length; i += 1) {

            int tmp = array[i];

            int j = i-group;

            for (; j >= 0; j-=group) {

                if(tmp < array[j]){

                    array[j+group] = array[j];

                }else{

                    break;

                }

            }

            array[j+group] = tmp;

        }

    }

    public static void shellSort(int[] array){

        int group = array.length;

        // 预排序

        while(group > 1){

            // 第一次分组委 数组的长度,即 头尾判断。

            // 其后,每次分组个数,缩小一倍。

            shell(array,group);

            group /= 2;

        }

        // 最后调整

        shell(array,1);

    }



    public static void main(String[] args) {

        int[] array ={12,5,9,34,6,8,33,56,89,0,7,4,22,55,77};

        shellSort(array);

        System.out.println(Arrays.toString(array));

    }

}





在这里插入图片描述


总结


其实 希尔排序就是一个直接插入排序。


选择排序

===================================================================

直接选择排序 - 原理


在这里插入图片描述


优化


定义 一个 变量, 用来记录 此时的 i 后面最小值的下标。等 j 遍历完了,最小值的下标也就拿到了。此时,再进行交换。

这样就不必让上面那样,遇到比 i下标元素 小的,就交换。


代码如下



import java.util.Arrays;



public class SelectSort {

    /*

    * 稳定性: 不稳定 见附图

    * 时间复杂度:O(N^2) 》》 外层循环 n -1,内层循环 n -1

    * 空间复杂度:O(1)

    * */

    public static void selectSort(int[] array){

        for (int i = 0; i < array.length-1; i++) {

            int index = i;

            for (int j = i + 1; j < array.length; j++) {

                if(array[index] > array[j]){

                    index = j;

                }

            }

            int tmp = array[i];

            array[i] = array[index];

            array[index] = tmp;

        }

    }



    public static void main(String[] args) {

        int[] array = {12,6,10,3,5};

        selectSort(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述

附图

在这里插入图片描述


双向选择排序 (了解)

==========================================================================

每一次从无序区间选出最小 + 最大的元素,存放在无序区间的最前和最后,直到全部待排序的数据元素排完 。

在这里插入图片描述


代码如下



import java.util.Arrays;



public class SelectSortOP {

    public static void selectSortOP(int[] array){

        int low = 0;

        int high = array.length - 1;

        // [low,high] 表示整个无序区间

        while(low < high){

            int min = low;

            int max = low;

            for (int i = low+1; i <= high; i++) {

                if(array[i] < array[min]){

                    min = i;

                }

                if(array[i] > array[max]){

                    max = i;

                }

            }

            swap(array,min,low);

            if(max == low){

                max = min;

            }

            swap(array,max,high);

            low++;

            high--;

        }



    }

    public static void swap(int[] array,int x,int y){

        int tmp = array[x];

        array[x] = array[y];

        array[y] = tmp;

    }



    public static void main(String[] args) {

        int[] array = {9, 5, 2, 7, 3, 6, 8 };

        selectSortOP(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述


堆排序

==================================================================

基本原理也是选择排序,只是不在使用遍历的方式查找无序区间的最大的数,而是通过堆来选择无序区间的最大的数。

注意: 排升序要建大堆;排降序要建小堆.

这个我就不讲,因为我在 堆/优先级中讲的很清楚!

有兴趣的,可以点击 链接关键字 ,跳转到该文章,该内容在 文章目录最后面。

这里我们就直接上代码。

在这里插入图片描述


代码



import java.util.Arrays;



public class HeapSort {

    public static void main(String[] args) {

        int[] array = {12,8,5,4,10,15};

        creationHeap(array);// 建堆的时间复杂度:O(N)

        System.out.println(Arrays.toString(array));

        heapSort(array);// 堆排序的时间复杂度:O(N * log2 N)

        // 空间复杂度:O(1)

        System.out.println(Arrays.toString(array));

    }

    // 创建一个大根堆

    public static void creationHeap(int[] array){

        for (int parent = (array.length-1-1)/2; parent >= 0; parent--) {

            shiftDown(array,parent,array.length);

        }

    }

    public static void heapSort(int[] array){

        /*

        * 时间复杂度:O(N * log2 N)

        * 空间复杂度:O(1)

        * 稳定性:不稳定

        * */

        int end = array.length - 1;

        while(end>0){

            int tmp = array[end];

            array[end] = array[0];

            array[0] = tmp;

            shiftDown(array,0,end);

            end--;

        }

    }

    // 向下调整

    public static void shiftDown(int[] array,int parent,int len){

        int child = parent * 2 + 1;// 做孩纸

        while(child < len){

            // 获取左右子树最大值的下标

            if(child+1 < len && (array[child] < array[child+1])){

                child++;

            }

            if(array[child] > array[parent]){

                int tmp = array[child];

                array[child] = array[parent];

                array[parent] = tmp;

                parent = child;

                child = parent * 2 + 1;

            }else{

                break;

            }

        }

    }

}



在这里插入图片描述


冒泡排序

===================================================================

在这里插入图片描述


代码如下 - 未优化



import java.util.Arrays;

    /*

     * 时间复杂度:O(N^2) 【无论是最好情况,还是最坏情况,时间复杂度都不变】

     * 空间复杂度:O(1)

     * 稳定性:稳定【未发生跳跃式交换】

     * */

public class BubbleSort {

    public static void bubbleSort(int[] array){

        // 比较的趟数 = 数组的长度 - 1 【 0 ~ 3 一共 4趟】

        for (int i = 0; i < array.length-1; i++) {

            // 比较完一趟后,可以比较的元素个数减一。【因为靠后的数据已经有序】

            // 内循环中,之所以要减一个 1,是因为防止 下面的if语句 发生 数组越界异常

            for(int j = 0;j< array.length-1-i;j++){

                if(array[j] > array[j+1]){

                    int tmp = array[j];

                    array[j] = array[j+1];

                    array[j+1] = tmp;

                }

            }

        }

    }



    public static void main(String[] args) {

        int[] array = {12,6,10,3,5};

        bubbleSort(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述


代码优化思维


在这里插入图片描述


代码如下 - 优化


import java.util.Arrays;



public class BubbleSort {

    /*

    * 时间复杂度:O(N^2)

    * 最好情况【数组有序】可以达到 O(N)

    * 空间复杂度:O(1)

    * 稳定性:稳定【未发生跳跃式交换】

    * */

    public static void bubbleSort(int[] array){

        for (int i = 0; i < array.length-1; i++) {

            boolean flag = true;

            for(int j = 0;j< array.length-1-i;j++){

                if(array[j] > array[j+1]){

                    int tmp = array[j];

                    array[j] = array[j+1];

                    array[j+1] = tmp;

                    flag = false;// 表示这一趟比较,数组是无序的

                }

            }

            // flag == true

            if(flag){

                break;

            }

        }

    }



    public static void main(String[] args) {

    // 前半段无序,后半段有序

        int[] array = {2,3,1,4,5};

        bubbleSort(array);

        System.out.println(Arrays.toString(array));

    }

}





在这里插入图片描述


未优化 和 优化代码 运行速度比较



public class BubbleSort {

    // 优化

    public static void bubbleSort2(int[] array){

        for (int i = 0; i < array.length-1; i++) {

            boolean flag = true;

            for(int j = 0;j< array.length-1-i;j++){

                if(array[j] > array[j+1]){

                    int tmp = array[j];

                    array[j] = array[j+1];

                    array[j+1] = tmp;

                    flag = false;

                }

            }

            // flag == true

            if(flag){

                break;

            }

        }

    }

    // 未优化

    public static void bubbleSort1(int[] array){

        for (int i = 0; i < array.length-1; i++) {

            for(int j = 0;j< array.length-1-i;j++){

                if(array[j] > array[j+1]){

                    int tmp = array[j];

                    array[j] = array[j+1];

                    array[j+1] = tmp;

                }

            }

        }

    }



    public static void main(String[] args) {

        int[] array = new int[10000];

        for (int i = 0; i < array.length; i++) {

            array[i] = i;

        }

        long start = System.currentTimeMillis();

        bubbleSort2(array);// 优化

        long end = System.currentTimeMillis();

        System.out.println(end - start);// 输出排序所需时间

        

        start = System.currentTimeMillis();

        bubbleSort1(array);// 未优化

        end = System.currentTimeMillis();

        System.out.println(end - start);//输出排序所需时间

    }

}



在这里插入图片描述


快速排序 - 重点

========================================================================

原理


1、从待排序区间选择一个数,作为基准值(pivot)

2、Partition(分割):遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的(可以包含相等的)放到基准值的右边。

3、采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 == 1.代表已经有序,或者小区间的长度 == 0,代表没有数据。

在这里插入图片描述


总结


快速排序,其实说白了 和 二叉树 很像,先根,再左,后右。利用递归去实现!


程序框架



public class QuickSort {

    public static void quickSort(int[] array){

        quick(array,0, array.length);

    }

    public static void quick(int[] array,int start,int end){

        if(start >= end){

            return;

        }

        int pivot = partiton(array,start,end);

        quick(array,start,pivot-1);// 递归左边

        quick(array,pivot+1,end);// 递归右边

    }

    // 分割 - 找基准

    private static int partiton(int[] array,int start,int end){



    }

}




完善 partition 部分



    // 分割 - 找基准

    private static int partiton(int[] array,int start,int end){

        int tmp = array[start];

        while(start < end){

            while(start < end && array[end] >= tmp){

                end--;

            }

            // 此时 end 下标 元素的值 是 小于 tmp的。

            array[start] = array[end];

            while(start<end && array[start] <= tmp){

                start++;

            }

            //此时 start 下标元素的值 是 大于 tmp的。

            array[end] = array[start];

        }

        // start 和 end 相遇了,将 tmp 赋予 它们相遇下标指向的空间

        array[start] = tmp;

        return start;

    }



在这里插入图片描述


代码细节部分

在这里插入图片描述


总程序 - 未优化



import java.util.Arrays;



public class QuickSort {

    /*

    * 时间复杂度:O(N^2) 【数据有序或者逆序的情况】

    * 最好情况【每次可以均匀的分割待排序序列】:O(N * log2 N)

    * 空间复杂度:O(N)[单分支的一棵树]

    * 最好:log2 N

    * 稳定性:不稳定

    * */

    public static void quickSort(int[] array){

        quick(array,0, array.length-1);

    }

    public static void quick(int[] array,int start,int end){

        if(start >= end){

            return;

        }

        int pivot = partiton(array,start,end);

        quick(array,start,pivot-1);// 递归左边

        quick(array,pivot+1,end);// 递归右边

    }

    // 分割 - 找基准

    private static int partiton(int[] array,int start,int end){

        int tmp = array[start];

        while(start < end){

            while(start < end && array[end] >= tmp){

                end--;

            }

            // 此时 end 下标 元素的值 是 小于 tmp的。

            array[start] = array[end];

            while(start<end && array[start] <= tmp){

                start++;

            }

            array[end] = array[start];

        }

        array[start] = tmp;

        return start;

    }



    public static void main(String[] args) {

        int[] array = {6,1,2,7,9,3,4,5,10,8};

        quickSort(array);

        System.out.println(Arrays.toString(array));

    }

}




快速排序 的 时间 与 空间复杂度分析


在这里插入图片描述


堆排序 与 快排 的区别


细心的朋友会发现 堆排序 和 快排 的 时间复杂度在最好情况下 都是N* log2 N。

那么,两者又有什么区别?

堆排序,无论最好还是最坏情况,时间复杂度都是N* log2 N。空间复杂度 O(1)

那么,又为什么快排 比 堆排序 要快?

其实再细一点说 :在两个排序的时间复杂度都为 N* log2 N时,其实连着前面还有 一个 k【K * N* log2 N 】,只不过快排前面的K要小一点。所以快排要快一点。

在对空间复杂度没有要求的情况: 快排

对空间复杂度有要求的情况,或者说对数据的序列也要要求: 堆排


细节拓展


if语句中 比较大小的代码中 等号是不能省略的

当 下面框选的代码 没有等号时,会造成死循环。

在这里插入图片描述

我就改了一下,末尾元素的值。

在这里插入图片描述

那么,问题来了:为什么没有等号就死循环了?

在这里插入图片描述

所以,在 写快排的时候,比较大小的代码,记住一定要加上等号!!!!!


目前版本的 快排代码 不支持 大量数据进行排序 - 会导致栈溢出。

在这里插入图片描述

这是因为 我们递归的太深了,1百万数据,4百万字节。

1TB等于1024GB;1GB等于1024MB;1MB等于1024KB;1KB等于1024Byte(字节);1Byte等于8bit(位);

在这里插入图片描述

有的朋友会说:这才多大啊?栈怎么会被挤爆?

这是因为在递归的时候,开辟的栈帧【函数的信息,参数等等等…都有】,所以,每次开辟的栈帧不止 4byte。故栈被挤爆了。

所以,我们要优化快排的 代码。【优化:数据有序的情况】


基准值的选择 - 优化前的知识补充


1、选择边上(左或者右) 【重点,上面使用的就是这种方法】

2、随机选择(针对 有序数据)【了解】

在这里插入图片描述

3、几数取中(常见的就是三数取中):array[left],array[mid] ,array[right]中 大小为 中间值的为基准值【优化的关键】

在这里插入图片描述


快速排序(几数取中法 优化)



import java.util.Arrays;



public class QuickSort {

    /*

    * 时间复杂度:O(N^2) 【数据有序或者逆序的情况】

    * 最好情况【每次可以均匀的分割待排序序列】:O(N * log2 N)

    * 空间复杂度:O(N)[单分支情况]

    * 最好:log2 N

    * 稳定性:不稳定

    * */

    public static void quickSort(int[] array){

        quick(array,0, array.length-1);

    }

    public static void quick(int[] array,int start,int end){

        if(start >= end){

            return;

        }

        // 在找基准之前,先确定 start 和 end 的 中间值。[三数取中法]

        int midValIndex = findMidValIndex(array,start,end);

        //将它 与 start 交换。这样后面的程序,就不用改动了。

        swap(array,start,midValIndex);

        int pivot = partiton(array,start,end);

        quick(array,start,pivot-1);// 递归左边

        quick(array,pivot+1,end);// 递归右边

    }

    // 确定基准值下标

    private static int findMidValIndex(int[] array,int start,int end){

        // 确定 start 和 end 的中间下标

        int mid = start + ((end - start)>>>1);// == (start + end)/ 2

        // 确定 mid、start、end 三个下标,谁指向的元素是三个元素中的中间值

        if(array[end] > array[start]){

            if(array[start] > array[mid]){

                return start;

            }else if(array[mid] > array[end]){

                return end;

            }else{

                return mid;

            }

        }else{

            // array[start] >= array[end]

            if(array[end] > array[mid]){

                return end;

            }else if(array[mid] > array[start]){

                return start;

            }else {

                return mid;

            }

        }

    }

    // 交换两个下标元素

    private static void swap(int[] array,int x,int y){

        int tmp = array[x];

        array[x] = array[y];

        array[y] = tmp;

    }



    // 分割 - 找基准

    private static int partiton(int[] array,int start,int end){

        int tmp = array[start];

        while(start < end){

            while(start < end && array[end] >= tmp){

                end--;

            }

            // 此时 end 下标 元素的值 是 小于 tmp的。

            array[start] = array[end];

            while(start<end && array[start] <= tmp){

                start++;

            }

            array[end] = array[start];

        }

        array[start] = tmp;

        return start;

    }

    // 有序

    public static void test1(int capacity){

        int[] array = new int[capacity];

        for (int i = 0; i < capacity; i++) {

            array[i] = i;

        }

        long start = System.currentTimeMillis();

        quickSort(array);

        long end = System.currentTimeMillis();

        System.out.println(end - start);

    }



    public static void main(String[] args) {

        test1(100_0000);

        int[] array = {6,1,2,7,9,3,4,5,10,6};

        quickSort(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述


优化总结

1、选择基准值很重要,通常使用几数取中法

2、partition 过程中把和基准值相等的数也选择出来

在这里插入图片描述

3、待排序区间小于一个阈(yù)值【临界值】

随着不断的划分基准,数组逐渐趋于有序,而区间随着递归也在减小。所以,利用 直接插入排序的特性【越有序越快】,来进一步优化 快排。

在这里插入图片描述


拓展 快速排序 - 非递归实现


非递归实现快速排序的思维

在这里插入图片描述


代码如下


import java.util.Arrays;

import java.util.Stack;



public class QuickSortNonRecursion {

    public static void quickSort(int[] array){

        Stack<Integer> stack = new Stack<>();

        int left = 0;

        int right = array.length-1;

        int pivot = partiton(array,left,right);

        if(pivot > left+1){

            stack.push(left);

            stack.push(pivot-1);

        }

        if(pivot < right -1){

            stack.push(pivot+1);

            stack.push(right);

        }

        while(!stack.isEmpty()){

            right = stack.pop();

            left = stack.pop();

            pivot = partiton(array,left,right);

            if(pivot>left+1){

                stack.push(left);

                stack.push(pivot-1);

            }

            if (pivot<right-1){

                stack.push(pivot+1);

                stack.push(right);

            }

        }

    }

    public static int partiton(int[] array,int start,int end){

        int tmp = array[start];

        while(start<end){

            while(start<end && array[end] >=tmp){

                end--;

            }

            array[start] = array[end];

            while (start<end && array[start] <= tmp){

                start++;

            }

            array[end] = array[start];

        }

        array[start] = tmp;

        return start;

    }



    public static void main(String[] args) {

        int[] array = {12,5,8,1,10,15};

        quickSort(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述


归并排序 - 重点

========================================================================

知识铺垫 : 二路合并


将两个有序表合并成一个有序表,称为二路归并。【简单说就是 将两个有序数组合并为一个有序数组,称为二路合并】

在这里插入图片描述


二路合并的代码如下


import java.util.Arrays;



public class MergeSort {



/*

* array1 已有序

* array2 已有序

* */

    public static int[] mergeArrays(int[] array1,int[] array2){

        if(array1 == null || array2 == null){

            return array1 == null ? array2: array1;

        }

        int[] arr = new int[array1.length + array2.length];

        int i = 0;// arr 的 遍历变量

        int s1 = 0;//array1 的 遍历变量

        int s2 = 0;//array2 的 遍历变量

        while(s1 < array1.length && s2 < array2.length){

            if(array1[s1] > array2[s2]){

                arr[i++] = array2[s2++];

//                s2++;

//                i++;

            }else{

                arr[i++] = array1[s1++];

//                s1++;

//                i++;

            }

        }

        // 循环结束,有一个数组的元素已经全部存入

        // 接下来就是将另一个数组的元素放入 arr 中

        while (s1 < array1.length){

            arr[i++] = array1[s1++];

//            i++;

//            s1++;

        }

        while (s2 < array2.length){

            arr[i++] = array2[s2++];

//            i++;

//            s2++;

        }

        return arr;

    }



    public static void main(String[] args) {

        int[] array1 = {1,6,7,10};

        int[] array2 = {2,3,4,9};

        int[] mergeArray = mergeArrays(array1,array2);

        System.out.println(Arrays.toString(mergeArray));

    }

}



在这里插入图片描述


归并排序 - 原理


归并排序(MERGE - SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

在这里插入图片描述


难点1 - 如何将一个数组拆分成一个个单独数组【每个数组里只包含一个元素】。


在这里插入图片描述


难点2 - 合并


在这里插入图片描述


归并排序的程序框架


public class MergeSort {

    // 归并排序的调用“接口”

    public static int[] mergeSort(int[] array){

        if(array == null){

            return array;

        }

        mergeSortFunc(array,0,array.length-1);

        return array;

    }

    // 归并排序实现

    private static void mergeSortFunc(int[] array,int low,int high){

        if(low >= high){

            return;

        }

        // 递归分解

//       int mid = (high + low) >>> 1

        int mid = low + ((high - low) >>> 1);

        mergeSortFunc(array,low,mid);// 左边

        mergeSortFunc(array,mid+1,high);// 右边



         // 合并

        merge(array,low,mid,high);

    }



    private static void merge(int[] array,int low,int mid,int high){



    }

}




合并程序的完善

其实这个并不难,跟我前面做的知识铺垫的思路是一样的。

需要注意的是:

1、我们的参数中 只有一个数组

2、数组 arr ,只是一个临时数组,用来存储 合并之后的结果。

3、在将 arr 数组 存储的结果,转移到 原本数组的时候,注意赋值的位置!


    private static void merge(int[] array,int low,int mid,int high){

    // 获取 区间之内的元素个数,加一 是因为 零下标元素也算一个元素。

        int[] arr = new int[high - low +1];

        // 左边 区间 【你可以理解为 有序数组 array1的起始与结束下标位置】

        int start1 = low;

        int end1 = mid;

        // 右边 区间【你可以理解为 有序数组 array2的起始与结束下标位置】

        int start2 = mid+1;

        int end2 = high;

        int i = 0;

        while (start1 <= end1 && start2 <= end2){

            if(array[start1] > array[start2]){

                arr[i++] = array[start2++];

            }else{

                arr[i++] = array[start1++];

            }

        }

        while(start1 <= end1){

            arr[i++] = array[start1++];

        }

        while(start2 <= end2){

            arr[i++] = array[start2++];

        }

        // 将 arr 存储的 合并数据,转换到原本数组上。

        // 注意 array 数组中括号的下标的位置。

        for (int j = 0; j < arr.length; j++) {

            array[low++] = arr[j];

        }

    }




附图

在这里插入图片描述


归并排序 - 总程序



import java.util.Arrays;



public class MergeSort {

    /*

    * 时间复杂度:N * log2 N

    * 空间复杂丢:O(N)

    * 稳定性:稳定

    * */

    public static int[] mergeSort(int[] array){

        if(array == null){

            return array;

        }

        mergeSortFunc(array,0,array.length-1);

        return array;

    }

    private static void mergeSortFunc(int[] array,int low,int high){

        if(low >= high){

            return;

        }

//       int mid = (high + low) >>> 1

        int mid = low + ((high - low) >>> 1);

        mergeSortFunc(array,low,mid);// 左边

        mergeSortFunc(array,mid+1,high);// 右边

        merge(array,low,mid,high);

    }



    private static void merge(int[] array,int low,int mid,int high){

        int[] arr = new int[high - low +1];

        int start1 = low;

        int end1 = mid;

        int start2 = mid+1;

        int end2 = high;

        int i = 0;

        while (start1 <= end1 && start2 <= end2){

            if(array[start1] > array[start2]){

                arr[i++] = array[start2++];

            }else{

                arr[i++] = array[start1++];

            }

        }

        while(start1 <= end1){

            arr[i++] = array[start1++];

        }

        while(start2 <= end2){

            arr[i++] = array[start2++];

        }

        for (int j = 0; j < arr.length; j++) {

            array[low++] = arr[j];

        }

    }

    

    public static void main(String[] args) {

        int[] array = {1,6,7,10,2,3,4,9};

        mergeSort(array);

        System.out.println(Arrays.toString(array));

    }

}



在这里插入图片描述


归并排序 - 时间与空间复杂度分析、稳定性


在这里插入图片描述


归并排序 - 非递归实现


在这里插入图片描述


代码如下


import java.util.Arrays;



public class MergeSortNonRecursion {

    public static void mergeSort(int[] array){

        //归并排序非递归实现

        int groupNum = 1;// 每组的数据个数

        while(groupNum < array.length){

            // 无论数组含有几个元素, 数组每次都需要从下标 0位置,开始遍历。

            for(int i = 0;i<array.length;i+= groupNum * 2){

                int low = i;

                int mid = low + groupNum -1;



                // 防止越界【每组的元素个数,超过了数组的长度】

                if(mid >= array.length){

                    mid = array.length-1;

                }

                int high = mid + groupNum;



                // 防止越界【超过了数组的长度】

                if(high >= array.length){

                    high = array.length-1;

                }

                merge(array,low,mid,high);

            }

            groupNum *= 2;//每组的元素个数扩大到原先的两倍。

        }

    }

    public static void merge(int[] array,int low,int mid,int high){

    // high 与 mid 相遇,说明 此时数组分组只有一组,也就说没有另一组的数组与其合并

    // 即数组已经有序了,程序不用再往下走。

         if(high == mid){

            return;

        }

        int[] arr = new int[high -low + 1];

        int start1 = low;

        int end1 = mid;

        int start2 = mid+1;

        int end2 = high;

        int i = 0;

        while(start1 <= end1 && start2 <= end2){

            if(array[start1]>array[start2]){

                arr[i++] = array[start2++];

            }else{

                arr[i++] = array[start1++];

            }

        }

        while (start1 <= end1){

            arr[i++] = array[start1++];

        }

        while(start2 <= end2){

            arr[i++] = array[start2++];

        }

        for (int j = 0; j < arr.length; j++) {

            array[low++] = arr[j];

        }

    }



    public static void main(String[] args) {

        int[] array = {12,5,8,7,3,4,1,10};

        mergeSort(array);

        System.out.println(Arrays.toString(array));

    }

}





在这里插入图片描述


海量数据的排序问题


外部排序:排序过程需要在磁盘等外部存储进行的排序

【内部排序:排序过程需要在 内存上进行排序】

前提:内存只有 1G,需要排序的数据有 100G

因为内存中无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序。

1、先把文件切分成 200 份,每个512M

在这里插入图片描述

2、分别对 512M 的数据量 进行排序,因为 内存已经被分割了,512M < 1G 内存放得下。所以任何排序方式都可以,

3、进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

在这里插入图片描述


小总结

==================================================================

目前,我们讲了八种排序:直接插入排序、希尔排序、直接选择排序,双向选择排序、冒泡排序,堆排序、快速排序,归并排序。

其中稳定的排序:插入排序,冒泡排序,归并排序,一共三种。

另外,堆排序、归并排序、快速排序的时间复杂度都是 N * log2 N。

如果,你想速度快,就用快排。

如果,你想稳定,就用归并。

如果,你想空间复杂度低,就用堆排。

惊喜

最后还准备了一套上面资料对应的面试题(有答案哦)和面试时的高频面试算法题(如果面试准备时间不够,那么集中把这些算法题做完即可,命中率高达85%+)

image.png

image.png

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

0;

    while(start1 <= end1 && start2 <= end2){

        if(array[start1]>array[start2]){

            arr[i++] = array[start2++];

        }else{

            arr[i++] = array[start1++];

        }

    }

    while (start1 <= end1){

        arr[i++] = array[start1++];

    }

    while(start2 <= end2){

        arr[i++] = array[start2++];

    }

    for (int j = 0; j < arr.length; j++) {

        array[low++] = arr[j];

    }

}



public static void main(String[] args) {

    int[] array = {12,5,8,7,3,4,1,10};

    mergeSort(array);

    System.out.println(Arrays.toString(array));

}

}




![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/38d081f48ad2a123106979ee4220e56d.png)



* * *



[]( )海量数据的排序问题

------------------------------------------------------------------------



> 外部排序:排序过程需要在磁盘等外部存储进行的排序  

> 【内部排序:排序过程需要在 内存上进行排序】  

> 前提:内存只有 1G,需要排序的数据有 100G  

> 因为内存中无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序。  

> 1、先把文件切分成 200 份,每个512M  

> ![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/e0710ba1a5e9f293461c0b5e30b4948f.png)  

> 2、分别对 512M 的数据量 进行排序,因为 内存已经被分割了,512M < 1G 内存放得下。所以任何排序方式都可以,  

> 3、进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了  

> ![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/36ce4be47dc010e6e765757af6588a19.png)



* * *



[]( )小总结

==================================================================



> 目前,我们讲了八种排序:直接插入排序、希尔排序、直接选择排序,双向选择排序、冒泡排序,堆排序、快速排序,归并排序。  

> 其中稳定的排序:插入排序,冒泡排序,归并排序,一共三种。  

>    

> 另外,堆排序、归并排序、快速排序的时间复杂度都是 N \* log2 N。  

> 如果,你想速度快,就用快排。  

> 如果,你想稳定,就用归并。  

> 如果,你想空间复杂度低,就用堆排。




# 惊喜

最后还准备了一套上面资料对应的面试题(有答案哦)和面试时的高频面试算法题(如果面试准备时间不够,那么集中把这些算法题做完即可,命中率高达85%+)

[外链图片转存中...(img-3QdwoEH8-1715822920837)]


[外链图片转存中...(img-2v5IXpIl-1715822920838)]

> **本文已被[CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】](https://bbs.csdn.net/topics/618154847)收录**

**[需要这份系统化的资料的朋友,可以点击这里获取](https://bbs.csdn.net/topics/618154847)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值