=
C
x
~
k
\begin{cases} \tilde{x}_k=A\tilde{x}_{k-1}+Bu_{k-1}+f\left[ y_{k-1}-\tilde{y}_{k-1} \right]\ \tilde{y}_k=C\tilde{x}_k\\end{cases}
{xk=Axk−1+Buk−1+f[yk−1−yk−1]yk=Cx~k
定义误差向量
e
k
=
x
k
−
x
~
k
e_k=x_k-\tilde{x}_k
ek=xk−x~k,则两系统状态方程相减得
系统误差传递方程
e
k
=
(
A
−
f
C
)
e
k
−
1
系统误差传递方程e_k=\left( A-fC \right) e_{k-1}
系统误差传递方程ek=(A−fC)ek−1
其通解为矩阵指数函数,所以当
A
−
f
C
A-fC
A−fC特征值小于0时,误差向量
e
k
e_k
ek各分量均趋于0,即状态观测器能直接估计原系统状态。
本质上,状态观测器是针对状态空间方程描述的确定系统,从错误的系统状态估计值不断收敛到正确的系统状态估计值的数学模型。
2 状态滤波器
实际的系统往往是随机过程,状态描述为:
{
x
k
=
A
x
k
−
1
B
u
k
−
1
w
k
−
1
y
k
=
C
x
k
v
k
\begin{cases} x_k=Ax_{k-1}+Bu_{k-1}+w_{k-1}\ y_k=Cx_k+v_k\\end{cases}
{xk=Axk−1+Buk−1+wk−1yk=Cxk+vk
其中
w
k
w_k
wk称为过程噪声,主要由系统运行过程中的外力导致,如旋翼飞行器运动过程中受到的阵风;
v
k
v_k
vk称为测量噪声,主要由系统测量过程中测量仪器误差、精度不足导致。
本质上,状态滤波器是针对随机状态空间方程描述的随机系统,从不确定观测中提取信息,得到系统状态最优估计的数学模型。当
w
k
w_k
wk与
v
k
v_k
vk为高斯白噪声且相互独立时,状态滤波器为卡尔曼滤波器。
状态滤波器的核心是通过贝叶斯原理不断调整滤波器增益矩阵,以减小随机干扰,使估计的系统状态趋近于真实状态;而状态观测器的核心是通过极点配置确定观测器增益矩阵,使估计的状态跟踪当前系统的状态。
一般地,状态滤波器性能优于状态观测器,但在实际系统中,若随机噪声非高斯噪声,或有若干非线性环节,按常规噪声模型建立的状态滤波器可能发散,此时则更需要状态观测器的稳定性。
3 卡尔曼滤波器
考虑一个随机系统:
{
x
k
=
A
x
k
−
1
B
u
k
−
1
w
k
−
1
z
k
=
C
x
k
v
k
\begin{cases} x_k=Ax_{k-1}+Bu_{k-1}+w_{k-1}\ z_k=Cx_k+v_k\\end{cases}
{xk=Axk−1+Buk−1+wk−1zk=Cxk+vk
其中
w
k
N
(
0
,
Q
)
w_k~N\left( 0, Q \right)
wk N(0,Q)、
v
k
N
(
0
,
R
)
v_k~N\left( 0, R \right)
vk N(0,R),且
w
k
w_k
wk与
v
k
v_k
vk相互独立。
忽略噪声可建立该系统的先验数学模型(噪声仅满足随机分布,无法建模):
状态预测方程
{
x
^
k
−
=
A
x
^
k
−
1
B
u
k
−
1
z
^
k
−
=
C
x
^
k
{\text{状态预测方程}\begin{cases} \hat{x}_{k}^{-}=A\hat{x}_{k-1}+Bu_{k-1}\ \hat{z}_{k}^{-}=C\hat{x}_k\\end{cases}}
状态预测方程{xk−=Axk−1+Buk−1zk−=Cxk
基于上述系统,从贝叶斯方法引出卡尔曼滤波器状态更新方程:
状态更新方程
:
x
^
k
=
x
^