控制原理 详细总结卡尔曼滤波原理+具体案例分析_卡尔曼滤波应用实例分析报告(1)

=

C

x

~

k

\begin{cases} \tilde{x}_k=A\tilde{x}_{k-1}+Bu_{k-1}+f\left[ y_{k-1}-\tilde{y}_{k-1} \right]\ \tilde{y}_k=C\tilde{x}_k\\end{cases}

{xk​=Axk−1​+Buk−1​+f[yk−1​−y​k−1​]y​k​=Cx~k​​

定义误差向量

e

k

=

x

k

x

~

k

e_k=x_k-\tilde{x}_k

ek​=xk​−x~k​,则两系统状态方程相减得

系统误差传递方程

e

k

=

(

A

f

C

)

e

k

1

系统误差传递方程e_k=\left( A-fC \right) e_{k-1}

系统误差传递方程ek​=(A−fC)ek−1​

其通解为矩阵指数函数,所以当

A

f

C

A-fC

A−fC特征值小于0时,误差向量

e

k

e_k

ek​各分量均趋于0,即状态观测器能直接估计原系统状态。

本质上,状态观测器是针对状态空间方程描述的确定系统,从错误的系统状态估计值不断收敛到正确的系统状态估计值的数学模型

2 状态滤波器

实际的系统往往是随机过程,状态描述为:

{

x

k

=

A

x

k

1

B

u

k

1

w

k

1

y

k

=

C

x

k

v

k

\begin{cases} x_k=Ax_{k-1}+Bu_{k-1}+w_{k-1}\ y_k=Cx_k+v_k\\end{cases}

{xk​=Axk−1​+Buk−1​+wk−1​yk​=Cxk​+vk​​

其中

w

k

w_k

wk​称为过程噪声,主要由系统运行过程中的外力导致,如旋翼飞行器运动过程中受到的阵风;

v

k

v_k

vk​称为测量噪声,主要由系统测量过程中测量仪器误差、精度不足导致。

本质上,状态滤波器是针对随机状态空间方程描述的随机系统,从不确定观测中提取信息,得到系统状态最优估计的数学模型。当

w

k

w_k

wk​与

v

k

v_k

vk​为高斯白噪声且相互独立时,状态滤波器为卡尔曼滤波器

状态滤波器的核心是通过贝叶斯原理不断调整滤波器增益矩阵,以减小随机干扰,使估计的系统状态趋近于真实状态;而状态观测器的核心是通过极点配置确定观测器增益矩阵,使估计的状态跟踪当前系统的状态。

一般地,状态滤波器性能优于状态观测器,但在实际系统中,若随机噪声非高斯噪声,或有若干非线性环节,按常规噪声模型建立的状态滤波器可能发散,此时则更需要状态观测器的稳定性。

3 卡尔曼滤波器

考虑一个随机系统:

{

x

k

=

A

x

k

1

B

u

k

1

w

k

1

z

k

=

C

x

k

v

k

\begin{cases} x_k=Ax_{k-1}+Bu_{k-1}+w_{k-1}\ z_k=Cx_k+v_k\\end{cases}

{xk​=Axk−1​+Buk−1​+wk−1​zk​=Cxk​+vk​​

其中

w

k

N

(

0

,

Q

)

w_k~N\left( 0, Q \right)

wk​ N(0,Q)、

v

k

N

(

0

,

R

)

v_k~N\left( 0, R \right)

vk​ N(0,R),且

w

k

w_k

wk​与

v

k

v_k

vk​相互独立。

忽略噪声可建立该系统的先验数学模型(噪声仅满足随机分布,无法建模):

状态预测方程

{

x

^

k

=

A

x

^

k

1

B

u

k

1

z

^

k

=

C

x

^

k

{\text{状态预测方程}\begin{cases} \hat{x}_{k}^{-}=A\hat{x}_{k-1}+Bu_{k-1}\ \hat{z}_{k}^{-}=C\hat{x}_k\\end{cases}}

状态预测方程{xk−​=Axk−1​+Buk−1​zk−​=Cxk​​

基于上述系统,从贝叶斯方法引出卡尔曼滤波器状态更新方程:

状态更新方程

:

x

^

k

=

x

^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值