python中常用的九种预处理方法

得到:

array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]])

可以发现对于每一个样本都有,0.42+0.42+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值。

在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization

4. 特征二值化(Binarization)

给定阈值,将特征转换为0/1

binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)

binarizer.transform(X)

5. 标签二值化(Label binarization)

lb = sklearn.preprocessing.LabelBinarizer()

6. 类别特征编码

有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。

‘’’

遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939

寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!

‘’’

enc = preprocessing.OneHotEncoder()

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])

enc.transform([[0, 1, 3]]).toarray() #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])

上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位。

另一种编码方式

newdf=pd.get_dummies(df,columns=[“gender”,“title”],dummy_na=True)

7.标签编码(Label encoding)

‘’’

遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939

寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!

‘’’

le = sklearn.preprocessing.LabelEncoder()

le.fit([1, 2, 2, 6])

le.transform([1, 1, 2, 6]) #array([0, 0, 1, 2])

#非数值型转化为数值型

le.fit([“paris”, “paris”, “tokyo”, “amsterdam”])

le.transform([“tokyo”, “tokyo”, “paris”]) #array([2, 2, 1])

8.特征中含异常值时

sklearn.preprocessing.robust_scale

9.生成多项式特征

这个其实涉及到特征工程了,多项式特征/交叉特征。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!*

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值