数据预览如下:
导入包
import numpy as np
import pandas as pd
import re
读入数据
df = pd.read_excel(‘./data/李子柒视频数据.xlsx’)
df.head()
数据清洗
此部分我们初步对以下信息进行简单的处理,其中包含:
-
title:提取主题和介绍
-
top_rank:提取数值
-
view_num:提取数值
-
dm_num: 提取数值
-
dianzan: 计算数值
-
toubi: 计算数值
-
shoucang:计算数值
-
zhuanfa:计算数值
定义转换函数
def transform_num(x):
str1 = str(x)
if ‘万’ in str1:
return float(str1.strip(‘万’))*10000
else:
return float(str1)
提取数据
df[‘title_1’] = df.title.str.extract(‘【(.?)】.’)
df[‘title_2’] = df.title.str.split(‘】’).str[-1]
df[‘top_rank’] = df.top_rank.str.extract(‘最高全站日排行(\d+)名’)
df[‘view_num’] = df.view_num.str.extract(‘(\d+)’)
df[‘dm_num’] = df.dm_num.str.extract(‘(\d+)’)
df[‘dianzan’] = df.dianzan.apply(lambda x: transform_num(x))
df[‘toubi’] = df.toubi.apply(lambda x: transform_num(x))
df[‘shoucang’] = df.shoucang.apply(lambda x: transform_num(x))
df[‘zhuanfa’] = df.zhuanfa.apply(lambda x: transform_num(x))
转换类型
df[‘view_num’] = df.view_num.astype(‘int’)
df[‘dm_num’] = df.dm_num.astype(‘int’)
df[‘publish_time’] = pd.to_datetime(df[‘publish_time’])
经过处理之后的数据如下所示:
df.head(2)
数据可视化
此处我们将进行以下部分的可视化分析,首先导入所需包,其中pyecharts用于绘制动态可视化图形,stylecloud包用于绘制词云图。关键部分代码如下:
导出所需包
from pyecharts.charts import Pie, Line, Tab, Map, Bar, WordCloud, Page
from pyecharts import options as opts
from pyecharts.globals import SymbolType
import stylecloud
视频各年发布数量
发布数量
pub_year = df.publish_time.dt.year.value_counts().sort_index()
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
