Python爬虫入门教程03:二手房数据爬取

这篇博客介绍了如何使用Python进行二手房数据的爬取,包括设置请求头、解析HTML数据、处理异常以及保存数据到CSV文件。通过解析网页数据,提取标题、地址、小区、房价等关键信息,并演示了如何处理广告干扰数据。最后提到了多页爬取的思路,并分享了个人的编程学习经历。
摘要由CSDN通过智能技术生成

url = ‘https://cs.lianjia.com/ershoufang/’

headers = {

‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36’

}

response = requests.get(url=url, headers=headers)

print(response.text)

如果你不知道,返回的数据中是否有你想要的内容,你有复制网页的内容,在pycharm的输出结果中进行搜索查看。

在这里插入图片描述

三、解析数据


既然网站是静态网页数据,那么就可以直接在开发者工具中 Elements 查看数据在哪

在这里插入图片描述

如上图所示,相关的数据内容都包含在 li 标签里面。通过 parsel 解析库,进行解析提取数据就可以了。

selector = parsel.Selector(response.text)

lis = selector.css(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值