题面
以下伪代码应用插入排序对包含 n 个整数的序列 A 进行升序排序。
insertionSort(A, n, g)
for i = g to n-1
v = A[i]
j = i - g
while j >= 0 && A[j] > v
A[j+g] = A[j]
j = j - g
cnt++
A[j+g] = vshellSort(A, n)
cnt = 0
m = ?
G[] = {?, ?,..., ?}
for i = 0 to m-1
insertionSort(A, n, G[i])
函数insertionSort(A, n, g)的工作原理是:使用插入排序,使得序列A中彼此间隔为g的元素呈有序状态。在本题,你需要实现shellSort(A, n) ,希尔排序的原理是:选择一个降序且最后一个元素为1的序列G,对于G中每一个元素,依次执行insertionSort(A, n, g)。因此,其也被称为“缩小增量排序”。
大量研究表明,不同的G序列的选取对于排序的性能有着显著的影响。G序列由希尔排序增量序列的一部分逆序得到,比较著名的增量序列有Shell增量序列、Hibbard增量序列、Knuth增量序列、Gonnet增量序列、Sedgewick增量序列等。本题要求你使用Knuth增量序列编写这个排序程序,其递推公式为:
K1=1, Ki=3Ki−1+1
填写上面的伪代码中的?来完成这个程序。 给定 n 和序列 A,编写一个程序,首先输出符合要求的增量序列 Gi(i=0,1,...,m−1) ,并按升序输出 A。输出必须满足以下条件:
1≤m≤100
0≤Gi≤n
同时,你还要记录整个排序过程算法执行的交换次数cnt。
输入
整数 n 在第一行给出。 在接下来的第 n 行,给出了 n 个整数 Ai(i=0,1,…,n−1)。
其中
1≤n≤1,000,000
0≤Ai≤10^9
输出
在第一行输出整数 m。
在第二行输出 m 个整数Gi(i=0,1,…,m−1),用空格分隔。
在第三行输出cnt的值。
之后的n行分别输出排好序的Ai(i=0,1,…,n−1)。
输入样例
5
5
1
4
3
2
输出样例
2
4 1
3
1
2
3
4
5
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int m=0;
long long G[100];
long long cnt=0;
void insertionSort(long long a[],long long n,long long g)
{
for(long long i=g;i<n;i++)
{
long long v=a[i];
long long j=i-g;
while(j>=0&&a[j]>v)
{
a[j+g]=a[j];
j=j-g;
cnt++;
}
a[j+g]=v;
}
}
void shellSort(long long a[],long long n)
{
for(int i=1;i<=n;i=3*i+1)
{
m++;
G[m-1]=i;
}
printf("%d\n",m);
for(int i=m-1;i>=0;i--)
{
printf("%d ",G[i]);
}
printf("\n");
for(int i=m-1;i>=0;i--)
{
insertionSort(a,n,G[i]);
}
}
int main()
{
long long n;
scanf("%lld",&n);
long long *a=(long long *)malloc(n*sizeof(long long));
for(long long i=0;i<n;i++)
{
scanf("%lld",&a[i]);
}
shellSort(a,n);
printf("%lld\n",cnt);
for(long long i=0;i<n;i++)
{
printf("%lld\n",a[i]);
}
return 0;
}