希尔排序【东北大学oj数据结构2-4】C语言

题面

以下伪代码应用插入排序对包含 n 个整数的序列 A 进行升序排序。

insertionSort(A, n, g)
      for i = g to n-1
          v = A[i]
          j = i - g
          while j >= 0 && A[j] > v
              A[j+g] = A[j]
              j = j - g
              cnt++
          A[j+g] = v

 shellSort(A, n)
     cnt = 0
     m = ?
     G[] = {?, ?,..., ?}
     for i = 0 to m-1
         insertionSort(A, n, G[i])

函数insertionSort(A, n, g)的工作原理是:使用插入排序,使得序列A中彼此间隔为g的元素呈有序状态。在本题,你需要实现shellSort(A, n) ,希尔排序的原理是:选择一个降序最后一个元素为1的序列G,对于G中每一个元素,依次执行insertionSort(A, n, g)。因此,其也被称为“缩小增量排序”。

大量研究表明,不同的G序列的选取对于排序的性能有着显著的影响。G序列由希尔排序增量序列的一部分逆序得到,比较著名的增量序列有Shell增量序列、Hibbard增量序列、Knuth增量序列、Gonnet增量序列、Sedgewick增量序列等。本题要求你使用Knuth增量序列编写这个排序程序,其递推公式为:

K1​=1, Ki​=3Ki−1​+1

填写上面的伪代码中的?来完成这个程序。 给定 n 和序列 A,编写一个程序,首先输出符合要求的增量序列 Gi​(i=0,1,...,m−1) ,并按升序输出 A。输出必须满足以下条件:

1≤m≤100
0≤Gi​≤n

同时,你还要记录整个排序过程算法执行的交换次数cnt。

输入

整数 n 在第一行给出。 在接下来的第 n 行,给出了 n 个整数 Ai​(i=0,1,…,n−1)。
其中
1≤n≤1,000,000
0≤Ai​≤10^9

输出

在第一行输出整数 m。
在第二行输出 m 个整数Gi​(i=0,1,…,m−1),用空格分隔。
在第三行输出cnt的值。
之后的n行分别输出排好序的Ai​(i=0,1,…,n−1)。

输入样例

5

5

1

4

3

2

输出样例

2

4 1

3

1

2

3

4

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int m=0;
long long G[100];
long long cnt=0;
void insertionSort(long long  a[],long long n,long long g)
{
    for(long long  i=g;i<n;i++)
    {
        long long  v=a[i];
        long long  j=i-g;
        while(j>=0&&a[j]>v)
        {
            a[j+g]=a[j];
            j=j-g;
            cnt++;
        }
        a[j+g]=v;
    }
}
void shellSort(long long  a[],long long n)
{
 
    for(int i=1;i<=n;i=3*i+1)
    {
        m++;
        G[m-1]=i;
    }
    printf("%d\n",m);
    for(int  i=m-1;i>=0;i--)
    {
        printf("%d ",G[i]);
    }
    printf("\n");
    for(int  i=m-1;i>=0;i--)
    {
        insertionSort(a,n,G[i]);
    }
}
int main()
{
    long long  n;
    scanf("%lld",&n);
    long long  *a=(long long *)malloc(n*sizeof(long long));
    for(long long i=0;i<n;i++)
    {
        scanf("%lld",&a[i]);
    }
    shellSort(a,n);
    printf("%lld\n",cnt);
    for(long long i=0;i<n;i++)
    {
        printf("%lld\n",a[i]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值