最近秋招发放Offer已高一段落。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们
技术交流
球友分享
应星主邀请,在此简单分享一些我的啐啐念:
-
招聘时间长,结果公布晚:很多公司在7、8月就开始秋招,但许多同学还在暑期实习,导致面试结束后很久都不发意向书,需等后续同学一起排序。
-
岗位少,薪资上涨:美团和京东的加薪让许多公司措手不及,提升了秋招同学的薪资预期,报价普遍高于去年的水平。虽然现在的薪资不错,但不确定landing是否会更难,近期有很多无法转正的案例曝光。
我还算幸运的,作为一个末流985的llmer,获得了2家大厂的算法offer(比如字节豆包,腾讯WXG),也感谢星主的帮忙和辅导。
选择 offer 才真是一件折磨人的事情,来来回回苦恼了一个多月。首先就是城市,作为一个四川人,肯定是不想去北京的,但无奈北京岗位最核心最多。其次是业务前景,有些业务一般但给足了诚意,相反有些业务前景听着不错但薪资又差了一截,我总是很贪心地在这些条件中做取舍。
最后在童靴门都签完三方后,我选择了字节豆包作为我的第一份工作,希望后续一切顺利!也希望自己未来回成都一切顺利,有志同道合的朋友可以一起交流。
面经
字节面试正式批流程是3+1,一般来说是1轮业务面+1轮ld面+ 1轮+2面 +1轮hr面。流程会多一点。
我的timeline大概是7.25一面,到7.29二面,到8.5三面,8.15 左右hr面,8月下旬发意向offer。
一面交叉面
- 自我介绍
- 简历实习项目盘问(重点)
- 论文介绍,用整体故事串着讲
- 八股:ROPE位置编码原理以及为什么优于Alibi等,Transformer中的self-attention机制(原理,计算公式,scale),相比于SFT为什么需要RLHF以及在实际业务中如何选择
- 代码:K链表升序排列
- 反问环节
二面ld面
- 自我介绍
- 简历实习盘问(压力拉满,当时感觉面试官心情也不好)
- 八股:大模型建模概率如何建模,PPL计算公式,这种建模有哪些问题,如何改进;RAG Agent中的检索如何做,检索和LLM冲突了怎么处理
- 代码:M个字符串找出公共子串(能多想出几种方式吗,时空间复杂度分析);哈希排序On
- 反问环节
三面+2面
- 自我介绍
- 实习盘问+论文串讲
- 代码:链表快排;快排,归并排序,桶排,选择排原理以及时空间复杂度分析;
- 反问环节
最终结合面评,业务方向是豆包应用,业务很核心,待遇也相当不错,说实话当时真的纠结了很久,主要还是不太想去北京。字节给我的感受就是雷厉风行,事情处理速度非常快,包括面试推进流程,HR反馈速度,后面Offer发放,不愧是宇宙厂,这一点赞赞!